

J&J Innovative Medicine

Leveraging Remote Digital Health Technologies for Rapid Recruitment and Effective Assessment in Decentralized Clinical Trials: An MCI Case Study

Oliver Roesler¹, Jackson Liscombe^{1,2}, Michael Neumann¹, Hardik Kothare^{1,2}, Abhishek Hosamath¹, Lakshmi Arbatti¹, Doug Habberstad^{1,2}, Christiane Suendermann-Oeft^{1,2}, Meredith Bartlett¹, Cathy Zhang¹, Nikhil Sukhdev¹, Kolja Wilms¹, Anusha Badathala^{2,4}, Sandrine Istas⁵, Steve Ruhmel³, Bryan Hansen³, Madeline Hannan³, David Henley³, Arthur Wallace^{2,4}, Ira Shoulson¹, David Suendermann-Oeft¹, Vikram Ramanarayanan^{1,2,4} ¹Modality.AI, Inc., ²San Francisco Veterans Affairs Health Care System ³Janssen Research and Development, LLC. ⁴University of California, San Francisco ⁵ICON Strategic Solutions, ICON plc. oliver.roesler@modality.ai

Virtual Guide	Multimodal	Metrics	Takeaways
		 Speech 	
	RE LB UREC HHEC LANCENELC LLACELEC	 Facial 	. The use of a remote accessment platform allows for repid requitment and high participant
		 Cognitive 	 The use of a remote assessment platform allows for rapid recruitment and high participant retention.
		Linguistic	 Combining multiple facial, speech, and cognitive biomarkers allows to reliably distinguish MCI
		Limb-MotorEye-Gaze	patients from healthy controls.
		 Pose 	 Asking patients to self-report their most bothersome problems provides valuable insights about
A K K		•PROP	what matters to patients and how MCI affects their daily life.

Introduction

- Mild cognitive impairment (MCI) describes cognitive decline that is stronger than the decline expected due to normal aging.
- About 10-20% of adults who are at least 65 years old have MCI.
- Identifying people with MCI has the potential to allow for **early pharmaceutical interventions** before strong damage to the central nervous system has occurred.
- Is it feasible to rapidly recruit an elderly population with MCI for a **remote assessment of speech and cognitive function** through a **multimodal dialog platform** and achieve high retention?
- Can the extracted biomarkers be used to **reliably distinguish MCI patients from healthy controls**?

Data

- 200 participants (100 people with MCI and 100 healthy controls) were recruited via the U.S.
 Department of Veterans Affairs within 5 weeks.
- 2 assessments (one week apart) per participant administered through the Modality platform.
- During each assessment a virtual guide named Tina guides participants through 23 structured exercises to elicit speech, facial and cognitive behaviors.
- 181 participants completed both assessments leading to a retention rate of over 90%.

Clinical Validation

- Non-parametric Kruskal-Wallis tests were performed for each individual feature to determine which of them show a statistically significant difference (α = 0.01) between cohorts.
- Pearson correlations were computed between features of participants' subsequent sessions to assess the test-retest reliability of the features.
- Facial features showed the strongest signal with mostly acceptable or good reliability (Fig. 3).
- Four different classifiers were employed for

AcousticVowelSpace /u/ avg. lip aperture (0.76) SIT - 11_avg. lip aperture (0.81) SIT - 09_avg. lip aperture (0.81) • SIT - 07_avg. lip aperture (0.8) SIT - 09_avg. mouth surface area (0.82) -----SIT - 13_avg. lip aperture (0.83) -----RecallCAPTCHA_avg. lip aperture (0.69) Picture description - min. F0 (0.77) DigitSpanBackwards_avg. eye opening (R) (0.59) Counting - eyebrow_vpos_icd_left_avg (0.71) -----DigitSpanBackwards_avg. eye opening (0.61) delayed recall score (0.43) DelayedRecallOfWords_intensity (0.47) ------0.5 0.0 Effect size (Glass' Δ)

Figure 3: Effect sizes and test-retest reliabilities of statistically significant ($\alpha = 0.01$) speech, facial, and cognitive features. Positive effect sizes mean larger values for MCI patients.

		Classifier			
		LR	RF	MLP	SVM
	speech only	0.52	0.53	0.55	0.53
et	facial only	0.59	0.58	0.59	0.54
S	text only	0.62	0.59	0.62	0.61
Feature Set	cognitive only	0.57	0.58	0.55	0.55
eatr	combo - all	0.57	0.56	0.61	0.56
Fe	combo - significant	0.75	0.73	0.69	0.75

Table 3: Classification performance as measured by

Cohort	# Participants	Age (years)
MCI	90 (9F / 81M)	71.08 (9.10)
Controls	91 (9F / 82M)	71.30 (8.59)

Table 1: Participant demographics. Age is presented as mean (standard deviation).

Feature Extraction

 The Modality platform automatically 		Domain	Features	
extracts a variety of speech, facial, and text features in near-real-time		Energy	shimmer (%), intensity (dB), signal-to-noise ratio (dB)	
		Timing	speaking and articulation duration (sec.), articulation and speaking rate (WPM), percent pause time (PPT, %),	
during the assessment (Tab. 2).	Speech	Voice quality	canonical timing agreement (CTA, %) cepstral peak prominence (CPP, dB), harmonics-to- noise ratio (HNR, dB)	
 Speech features are extracted using Praat and Kaldi. 		Frequency	mean, max., min. fundamental frequency F0 (Hz), first	
			three formants F1, F2, F3 (Hz), slope of 2nd formant (Hz/sec.), jitter (%)	
Facial features are computed using		Mouth measurements	lip aperture/opening, lip width, mouth surface area, mean symmetry ratio between left and right half of the	
facial markers extracted by MediaPipe	acial	Movement	mouth velocity, acceleration, jerk, and speed of lower lip and	
 Face Detection and Face Mesh. Text features were computed using 			jaw center	
		Eyes	number of eye blinks per sec., eye opening, vertical dis- placement of eyebrows	
SpaCy based on automatic	xt	Lexico- semantic	word count, percentage of content words, noun rate, verb rate, pronoun rate, noun-to-verb ratio, noun-to-	
transcriptions obtained through	Text	Self-reported	pronoun ratio, closed class word ratio, idea density reported symptoms, reported problem domains	
Amazon Transcribe.		problems		
 Cognitive features were manually 	nitive	Scores	percentage of correct words (immediate and delayed word recall), digit span forward/backward score (ranges	

binary classification experiments using 5-fold cross-validation.

- The selected feature set had a strong influence on classification performance, while the selected classifier had only a small influence (Tab. 3).
- Using only the features that showed statistically significant differences between cohorts led to the **best AUC of 0.75** using a SVM classifier (Fig. 4).
- Each self-reported problem (PROP) was automatically transcribed via Amazon
 Transcribe.
- Transcriptions were provided to an inference model developed from a neural network with two hidden layers to identify which of 65
 symptoms were described by the participant.

area under the ROC curve (AUC) across multiple classifiers (LR: Logistic Regression; RF: Random Forests; MLP: Multi-layer Perceptron; SVM: Support Vector Machine) and feature sets.

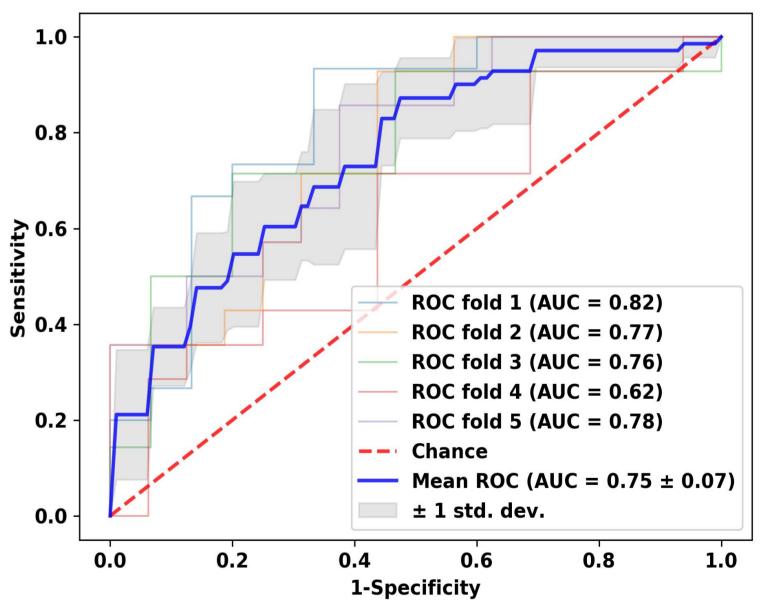
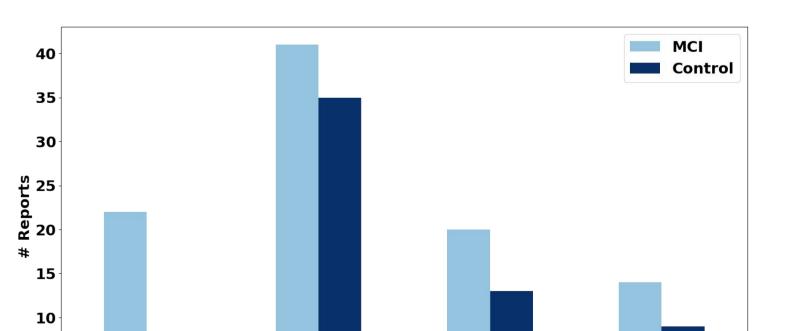


Figure 4: Binary classification results with 5-fold cross-validation using the 13 statistically significant feature as input to a support vector machine (SVM).



extracted by human annotators after the data collection.

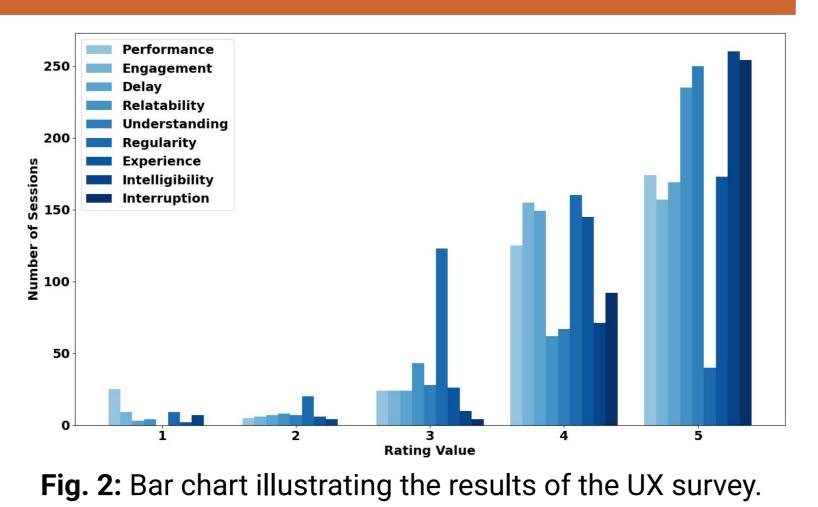
Timingresponse latency (sec.), response duration (sec.)

 Table 2: Overview of the extracted features across modalities.

Feasibility Analysis

Cogn

- Participants were asked to rate different
 aspects of the interaction on a 5-point Likert
 scale.
- The majority of participants rated most aspects of their interaction with the system as either "Satisfactory" (4) or "Very satisfactory" (5).



Symptoms were automatically grouped into 14
 domains

domains.

- MCI patients reported more cognition, gait,
- psychiatric, and sleep problems (Fig. 5).

 MCI patients reported nearly 2 times more problems with anxiety or worry and speech, nearly 4 times more problems with memory, and 6 times more problems with falls than healthy controls (Fig. 6). 5 Cognition Gait Psychiatric Sleep Figure 5: Self-reported problem domains affecting

