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Abstract

This study provides a comprehensive analysis of digital
speech, orofacial and linguistic features for the assessment of
schizophrenia. We recorded audio and video from 94 people
with schizophrenia (pSCZ) and 100 healthy controls (HC) and
extracted features automatically. Clinical rating scales were ad-
ministered to assess positive, negative, and cognitive symptoms.
We show that pSCZ exhibit significant alterations in speech tim-
ing, orofacial dynamics, and lexical richness, as compared to
HC. A multimodal classification approach achieved high accu-
racy (96% AUC, 87% UAR), with speech features contribut-
ing most to discrimination. Correlation analysis revealed that
speech timing and lip velocity measures are correlated with
blunted affect and alogia. Linguistic features correlate well with
positive symptoms, particularly conceptual disorganization and
excitement. Cognitive abilities are most strongly associated
with speech timing and specific linguistic features.
Index Terms: speech biomarkers, multi-modal dialog, remote
monitoring, clinical trials, schizophrenia

1. Introduction
Speech and language characteristics are well-known to be in-
formative markers for mental disorders such as depression or
schizophrenia spectrum disorder (SSD) [1, 2, 3]. People with
schizophrenia (pSCZ) commonly exhibit reduced word and sen-
tence production, slower articulation rate, impaired process-
ing of complex syntax, and deficits with semantic verbal flu-
ency [4, 5]. In addition to speech and language deficits, changes
in orofacial characteristics can be observed, such as reduced ex-
pressiveness (blunted affect) and aberrant movements [6, 7].

Beyond studying the characteristics that differ between
pSCZ and healthy controls (HC), there is a high need to identify
markers relevant for specific symptoms due to the highly het-
erogeneous presentation of symptoms in SSD, which are com-
monly categorized into positive, negative, and cognitive symp-
toms [8, 9]. The presence of these symptoms and the interac-
tion between them varies across individuals, and the lack of ob-
jective, reliable biomarkers makes it challenging to assess and
monitor the course of the disease.

Assessments of speech characteristics and facial expres-
sion are a promising direction towards objective measurements,
which can complement established clinical rating scales. One
challenge for the wide-spread adoption and clinical employ-
ment of such evaluations is the scalability and automation us-
ing digital technologies. Therefore, we aim to provide sup-
portive evidence for the feasibility and clinical utility of fully
automated speech assessments using a web-based multimodal
dialog system.

Several studies have investigated speech and language as-
sessments in SSD, often focusing on a single modality, such
as linguistic characteristics or acoustic speech markers. Acous-
tic analyses have revealed significant differences between pSCZ
and HC, with features like pitch, jitter, shimmer, and voice
breaks showing statistical differences [10]. Machine learn-
ing approaches have been applied to classify SSD based on
acoustic features, with studies reporting classification accura-
cies ranging from 70-80% using temporal speech fluency fea-
tures [11] to 86.2% using openSMILE’s eGeMAPS feature
set [12]. Some studies have further linked acoustic features to
symptom severity, showing weak to moderate correlations with
negative [13, 12] and positive [14] symptoms of SSD. Linguis-
tic features have also been explored. Recent work has employed
deep learning approaches to integrate linguistic and acoustic in-
formation [15], though these methods suffer from limited in-
terpretability, which is crucial in clinical applications. Instead
of focusing mainly on diagnosis, Martin et al. have recently
proposed a paradigm shift towards estimating clinical signs and
symptom severity [16].

A common weakness of many previous studies on SSD
is the small sample size of sometimes only 10 to 30 sub-
jects [11, 17, 15]. Furthermore, most studies focused on a single
modality and often on rather constrained, very specific feature
sets (e.g., MFCC features in [13] or voice quality features in
[10]). In contrast, this contribution aims to provide a compre-
hensive, multimodal analysis of a broad set of speech, language,
and orofacial characteristics, computed based on audiovisual
recordings from 94 pSCZ and 100 HC. We investigate the re-
lationship of these features with all three symptom domains,
positive, negative and cognitive symptoms. Specifically, this
study addresses the following research question: what is the
relative clinical utility of different modalities for the assessment
of schizophrenia, both with respect to discriminability between
pSCZ and HC, and in characterizing positive, negative and cog-
nitive symptoms associated with the disorder?

2. Data Collection and Dataset
Audiovisual data was collected using the Modality plat-
form [18, 19], a web-based multimodal dialog system for self-
guided clinical assessments. A virtual guide led study partic-
ipants through a set of tasks designed to elicit certain speech
and facial behaviors, including read speech (Bamboo reading
passage, 99 words), sentence intelligibility test (SIT), sustained
vowel phonation, diadochokinesis (DDK), and an open ques-
tion to elicit spontaneous speech. The language of this data
collection is English. Acoustic speech and orofacial video fea-
tures were extracted for all assessment tasks. For linguistic fea-
tures, we focused the spontaneous speech task where partici-



Table 1: Participant statistics. Age and clinical ratings are reported as mean (standard deviation). BNSS Total ranges from 0 to 78,
PANSS Negative and Positive Total range from 7 to 49 each, and PANSS Total ranges from 30 to 210. f: female, m: male.

Number of participants # sessions Age BNSS Total PANSS Neg. PANSS Pos. PANSS Total
pSCZ 94 (22 f, 71 m, 1 unspecified) 180 42.6 (11.6) 37.8 (10.2) 23.1 (3.8) 15.6 (4.7) 73.2 (13.3)

HC 100 (49 f, 51 m) 195 36.4 (11.4) - - - -

pants were asked to talk about a topic of their choice. Record-
ings from 94 pSCZ and 100 HC were collected in cooperation
with the Nathan Kline Institute, a total of 375 sessions (see Ta-
ble 1). Patients were inpatients with a DSM 5 diagnosis of
schizophrenia and the digital assessments were done in clinic
under supervision. Clinician ratings were available for the brief
negative symptom scale (BNSS, [20]), the positive and negative
syndrome scale (PANSS, [21]), and the brief assessment of cog-
nition in Schizophrenia (BACS, [22]).1 The BNSS and PANSS
are measures of symptom severity, with higher scores indicating
more severe symptoms. The BACS item scores were converted
into z-scores based on healthy norms published in [23], and a
composite BACS score was derived by calculating the mean of
the six items’ z-scores.

3. Methods
3.1. Multimodal Feature Extraction

We extracted acoustic, language and facial video features fully
automatically using digital signal processing, automatic speech
recognition, and computer vision techniques. The speech and
facial video features have been described in detail in previous
work [24], whereas the linguistic and graph-based language fea-
tures are a novel addition to our multimodal dialog system and
will be described in more detail in the following. Table 2 pro-
vides an overview of all features. We employed a distribution-
based algorithm to remove speech and facial feature outliers,
which may result from background noise, poor lighting, or task
errors. First, extreme outliers beyond five standard deviations
from the mean were removed, as they could skew the distri-
bution. This threshold was chosen empirically after analyzing
data distributions. The mean was then recomputed, and values
outside ±3 standard deviations were flagged and excluded from
further analysis. For the spontaneous speech task, samples with
less than 10 words in the automatic transcription were removed.
This threshold was set upon inspection of the data; such samples
were identified as incorrect task performance.

3.1.1. Acoustic Speech Features

We used Praat (v6.2.17) [25] to extract speech features, in-
cluding timing measures, such as percent pause time (PPT),
speaking duration (including pauses), and articulation duration
(excluding pauses), frequency-related measures, such as funda-
mental frequency (F0), energy-related measures, such as shim-
mer, and voice quality measures, such as cepstral peak promi-
nence (CPP). We also computed Canonical Timing Alignment
(CTA), a measure of the alignment of word and silence bound-
aries between the participant’s speech and a canonical speech
production of the same text [26].

3.1.2. Orofacial Video Features

These features are based on facial landmarks generated with
MediaPipe Face Mesh [27]. First, MediaPipe Face Detec-

1BACS scores were only available for a subset of 40 pSCZ.

tion, based on BlazeFace [28], is used to determine the (x, y)-
coordinates of the face for every video frame. Then, facial land-
marks are extracted using MediaPipe Face Mesh. We used 14
key landmarks to compute features like kinematics of the artic-
ulators (jaw, lower lip), surface area of the mouth, and eyebrow
raises. These landmarks include center and corners of the lips,
jaw center, nose tip, center and corners of the eyes, and the cen-
ter of the eyebrows. Lastly, the features were normalized by
dividing them by the inter-caruncular or inter-canthal distance,
to handle variability across participant sessions due to position
and movement relative to the camera [29].

3.1.3. Linguistic and Graph-Based Language Features

The choice of linguistic features was motivated by the review
article by Boschi et al. [30]. Speech samples were automat-
ically transcribed using AWS Transcribe.3 We computed lin-
guistic features from the transcriptions using the Python pack-
age spaCy, version 3.5.3. In addition to more traditional linguis-
tic features, we explored graph-based language features, which
offer a different means of analyzing the structure of text. These
features are based on graph-theoretical methods and have been
shown to capture aspects of normal and dysfunctional flow of
thought [31, 32].4 Transcriptions were transformed into two
kinds of graphs: a naive graph, where every distinct word (type)
in the text is a node, and a part-of-speech (POS) graph, where
every distinct POS is a node. Nodes are connected by an edge
if they correspond to consecutive words. We followed [32] and
computed ten features for each graph, see Table 2.

3.2. Clinical Validation

To identify features that show statistically significant differ-
ences between pSCZ and HC, we applied non-parametric
Kruskal-Wallis tests, using data from every participant’s first
recording session only (to avoid effects of repeated measure-
ments). We report effect sizes in terms of Glass’ delta, which
is based on the control group’s standard deviation as opposed
to a pooled standard deviation. Additionally, we evaluated a lo-
gistic regression model with L1 regularization in a nested 5-fold
cross-validation (CV) setup to assess classification performance
and generalizability to unseen data. The regularization parame-
ter C was tuned on each training fold using 5-fold inner CV.

Correlations between all extracted features and clinical
scales were assessed with Spearman’s rank correlation coeffi-
cients, also based on participants’ baseline sessions. For this
analysis, we focused on specific symptoms, for which changes
in speech, language usage, and/or orofacial expressiveness can
be expected, namely BNSS Alogia, Blunted Affect, Distress,
PANSS N1 (Blunted Affect), N6 (Lack of spontaneity and flow
of conversation), P2 (Conceptual disorganization), P4 (Excite-
ment), G7 (Motor Retardation), and G9 (Unusual thought con-
tent). For cognitive ratings, correlations were assessed for
the composite BACS score and for the six individual z-scores.

3https://aws.amazon.com/transcribe/
4https://github.com/guillermodoghel/

speechgraph



Table 2: Overview of extracted metrics. For visual metrics, functionals (minimum, maximum, average) were applied to produce one
value across all video frames of an utterance. Visual distance metrics were measured in pixels and normalized by dividing them by the
intercanthal distance (distance between inner corners of the eyes) for each participant. *specific to DDK task

Domain Extracted Metrics
Au

di
o

Energy shimmer (%), signal-to-noise ratio (SNR, dB)
Timing speaking and articulation duration (sec.), percent pause time (PPT, %), canonical tim-

ing alignment (CTA, %), cycle-to-cycle temporal variability* (cTV, sec.), syllable rate*
(syl./sec.), number of syllables*

Voice quality cepstral peak prominence (CPP, dB), harmonics-to-noise ratio (HNR, dB)
Frequency mean and standard deviation of the fundamental frequency F0 (Hz), first three formants F1,

F2, F3 (Hz), jitter (%)

Te
xt

Lexico-semantic noun rate, verb rate, demonstrative rate, pronoun rate, adjective rate, adverb rate, conjunc-
tion rate, possessive rate, noun-pronoun ratio, noun-verb ratio, closed-class word rate, open-
class word rate, percentage content words, light verb rate, idea density, number of repeti-
tions, Honore’s statistic, Brunet’s index, type-token ratio, average word length

Morphosyntactic inflected verb rate, gerund rate
Discourse-Pragmatic word count, number of subjects, number of objects, number of places, number of actions

Syntactic average dependency tree height
Sentiment Empath2 positive and negative cosine similarity

Graph based features No. of nodes, No. of edges, No. of parallel edges (PE), average degree of the graph, standard
deviation of the average degree, No. of nodes in the largest connected component (LCC)
and the largest strongly connected component (LSC), No. of self-loops (L1), loops with two
nodes (L2), and loops with three nodes (L3)

Vi
de

o

Mouth (distances) lip aperture/opening, lip width, mouth surface area,
mean symmetry ratio between left and right half of the mouth

Lip/Jaw Movement speed of the lower lip and jaw center
Eyes eye opening, vertical displacement of the eyebrows

For all aforementioned analyses, features were standardized (z-
scored) for females and males separately, to account for sex-
specific differences in certain feature domains (e.g., frequency-
related and voice quality).

4. Results
4.1. Clinical Utility: Statistical Tests and Classification

For the Kruskal-Wallis tests, we report findings only for fea-
tures that are significantly different between pSCZ and HC
(p < 0.05) and show at least a moderate effect size of 0.5 (in ab-
solute terms). We observed large effect sizes for timing related
speech features. DDK syllable rate, speaking duration for spon-
taneous speech, and CTA for the reading passage are reduced in
pSCZ, whereas percent pause time and speaking duration for the
reading task are increased. SNR and CPP are on average higher
in the pSCZ group for multiple tasks. Among the orofacial mea-
sures, two features show significant differences: average eye
opening (greater in pSCZ) and average lip width (smaller in
pSCZ). Linguistic features, which are all computed from the
spontaneous speech task, indicate overall a smaller amount of
speech for pSCZ (reduced word count, lower number of nodes
and edges in speech graphs). Furthermore, the number of rep-
etitions is increased, and a decreased Brunet’s index indicates
less lexical richness in the speech samples of pSCZ.

The results of the cross-validation classification experiment
are shown in Table 3, in terms of area under the ROC curve
(ROC-AUC) and unweighted average recall (UAR). While each
modality alone yields high accuracy, the multimodal combina-
tion of all features performs best with 96% AUC and 87% UAR.
Speech acoustic features appear to contribute the most informa-
tion, achieving results close to the best model. To gain insights
about the most informative features for this task, we ranked fea-
tures by their mean coefficient across all validation folds. Fig-

Table 3: Results for binary classification of pSCZ and HC.

Modality ROC-AUC UAR
Audio 0.94 0.87
Video 0.84 0.75

Text 0.79 0.74
Multimodal 0.96 0.87

Figure 1: The ten most useful features ranked by their abso-
lute coefficient value, including the mean and standard devia-
tion (error bars) of coefficients over all cross-validation folds.

ure 1 shows the top ten features’ coefficients and standard de-
viation across folds. The most relevant feature is CTA for the
reading passage, a measure of timing alignment and intelligi-
bility, followed by SNR for spontaneous speech. Orofacial and
linguistic features are also among the top ten, underscoring the
beneficial effect of a multimodal assessment approach.



Figure 2: Correlations between orofacial, speech and linguistic
features and clinical ratings of specific symptoms.

4.2. Correlation Analysis

Figure 2 shows correlations between features and selected
symptom scores of the BNSS and PANSS, and Figure 3 shows
correlations for cognitive scores of the BACS assessment. Only
features are shown for which at least one correlation with a
clinical rating scale item is significant (p < 0.05) and has an
absolute correlation coefficient of at least 0.3. For blunted af-
fect (BNSS Blunted Affect and PANSS N1) and alogia we ob-
serve moderate negative correlations with timing and velocity
related measures (number of DDK syllables, speaking dura-
tion, lower lip speed) and positive correlations with average eye
opening and the largest strongly connected component in the
word graph (LSC). Lack of normal distress (BNSS Distress)
is moderately correlated with many facial features, potentially
indicating reduced facial expressiveness overall. The PANSS
N6 score about flow of conversation shows weak to moderate
correlations with speech and linguistic features. We observe
that many linguistic features are well correlated with the posi-
tive symptoms PANSS P2 (Conceptual disorganization) and P4
(Excitement). For the PANSS G7 score on motor retardation,
we observe weak to moderate negative correlations with aver-
age lower lip speed and the number of DDK syllables, and the
G9 score (Unusual thought content) shows moderate positive
correlations with most linguistic and orofacial features.

For the BACS composite score we observe the highest cor-
relations with CTA, possessive rate, and certain voice quality
features for the phonation task. Looking at individual BACS
item scores, two features stand out with correlation coeffi-
cients greater than 0.5, namely CTA (reading passage), which
is strongly correlated with the digit sequence score, and light
verb rate, which is correlated with the verbal memory score.

Figure 3: Correlations between orofacial, speech and linguistic
features and the BACS cognitive ratings.

5. Discussion & Conclusions
We presented a comprehensive, multimodal examination of a
broad set of interpretable speech, language, and orofacial mea-
sures computed from remote audiovisual recordings from 94
pSCZ and 100 HC, and demonstrated their complementary clin-
ical utility at characterizing various aspects of SSD, including
positive, negative and cognitive symptoms observed therein.
Such an analysis has important implications supporting the use
of such multimodal clinical analytics for remote assessment and
monitoring in clinical trials and care management.

While several interpretable features intuitively demonstrate
promise in characterizing positive (language graph features),
negative (facial features) and cognitive (CTA, lexico-semantic
features) symptoms, several others are counterintuitive discov-
eries. For instance, we observe that SNR and CPP are on av-
erage higher in the pSCZ group for multiple tasks, indicating
clearer, possibly louder speech with better voice quality (less
aperiodicity) than in the HC group, which is unexpected. It
is noteworthy that the PANSS N1 score shows higher correla-
tions with pgraph features than the BNSS blunted affect score,
although both scales measure blunted affect. In addition to
negative and positive symptoms, we selected the PANSS G7
item on motor retardation for this analysis because we hypothe-
sized that orofacial features provide potential markers to assess
slowed movement and reduced activity levels. A weak, but sig-
nificant correlation with average lower lip speed suggests such
potential. Future work is required to investigate whether these
findings are indeed robust. Additionally, these findings lay the
groundwork toward the development of more sensitive compos-
ite multimodal index scores that can predict and assess individ-
ual symptoms with applications towards schizophrenia clinical
trials and patient assessment.
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