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Abstract
We present MRI-TIMIT: a large-scale database of synchronized
audio and real-time magnetic resonance imaging (rtMRI) data
for speech research. The database currently consists of speech
data acquired from two male and two female speakers of Amer-
ican English. Subjects’ upper airways were imaged in the mid-
sagittal plane while reading the same 460 sentence corpus used
in the MOCHA-TIMIT corpus [1]. Accompanying acoustic
recordings were phonemically transcribed using forced align-
ment. Vocal tract tissue boundaries were automatically identi-
fied in each video frame, allowing for dynamic quantification of
each speaker’s midsagittal articulation. The database and com-
panion toolset provide a unique resource with which to examine
articulatory-acoustic relationships in speech production.
Index Terms: speech production, speech corpora, real-time
MRI, multi-modal database, large-scale phonetic tools

1. Introduction
There is a growing appreciation in the phonetics and the broader
speech research communities of the importance of speech data
acquired using multiple sensing modalities [2, 1]. A proper
understanding of speech production and linguistic represen-
tation cannot be gained from acoustic signals or articulatory
data alone [3, 4]. Phonetic transcriptions derived solely from
acoustic data are inadequate for investigation of the underlying
speech processes. Articulatory information also offers novel
ways of uncovering prosodic differences due to speech rate,
stress, duration, and affect, as shown by their effects on seg-
mental timing, coarticulation, and tract posture [5, 6]. Incorpo-
rating articulatory knowledge into automatic speech recognition
(ASR) technologies may also improve recognition of sponta-
neous speech, provide greater robustness to noise, and improve
the interpretability of ASR models [7, 8].

Large-scale corpora of articulatory data have previously
been compiled from a range of phonetic methodologies. The
Wisconsin X-ray microbeam database (XRMB) [9] consists of
parallel articulatory and acoustic data acquired from over 60
subjects, each of whom provide about 20 minutes of read speech
and oral motor tasks – an invaluable resource for studying artic-
ulatory dynamics, but insufficiently rich in continuous speech
data for most ASR applications [1].

The MOCHA-TIMIT database [1] contains synchronized
electromagnetic midsagittal articulometry (EMA), laryngo-
graphic, electropalatographic (EPG), and acoustic data from 40
speakers of English, each reading a 460 sentence subset of the
TIMIT Speech Corpus [10]. Because it was acquired using

four different sensing modalities, MOCHA-TIMIT constitutes
an unique source of real-time multi-modal speech data. How-
ever, as with all phonetic data acquired using these methods,
our knowledge of articulation is restricted to the areas of the
vocal tract where EPG, laryngographic, and EMA sensors can
be placed: palate, glottis and anterior lingual fleshpoints.

Real-time magnetic resonance imaging (rtMRI) is an im-
portant emerging tool for speech research [11, 12], provid-
ing dynamic information from the entire midsagittal plane of
a speaker’s upper airway, or any other scan plane of interest.
Midsagittal rtMRI captures not only lingual, labial and jaw mo-
tion, but also articulation of the velum, pharynx and larynx –
regions of the tract which cannot be monitored with other tech-
niques. While sampling rates are currently lower than for EMA
or XRMB, rtMRI is a unique source of dynamic information
about vocal tract shaping and global articulatory coordination.

Here we describe an initiative in which we are assembling a
large-scale, multi-speaker rtMRI speech database and support-
ing toolset, with the aim of advancing speech research based on
this modality, and making some of these resources available to
the broader speech research community. In Section 2 we de-
tail the acquisition of the database, before outlining its structure
and exemplifying the data in Section 3. In Section 4 we de-
scribe some tools developed for data access and analysis; and in
Sections 5-6 we illustrate some phonetic use of these data, and
suggest further applications for speech research.

2. Data Acquisition
2.1. Subjects

To date, data have been acquired from four native speakers
of General American English (Table 1). None of the subjects
spoke any other language fluently, or had lived outside the
United States for a significant amount of time. Both parents
of each of the subjects are native speakers of American English.
None of the speakers reported abnormal hearing or speaking de-
velopment or pathologies. Equal numbers of male and female
subjects were, and will continue to be recruited, so as to provide
a gender-balanced database of speakers.

2.2. Image Acquisition

MRI data were acquired at Los Angeles County Hospital on
a Signa Excite HD 1.5T scanner (GE Healthcare, Waukesha
WI) with gradients capable of 40 mT/m amplitude and 150
mT/m/ms slew rate. A custom 4-channel upper airway re-
ceiver coil array, with two anterior coil elements and two coil



Figure 1: Example utterance from the MRI-TIMIT database, showing audio spectrogram, synchronized rtMRI video (23.18
frames/sec), and forced-aligned phonemic transcription data. Illustratedsentence: “This was easy for us” uttered by Subject M1.

ID GENDER ETHNICITY AGE BIRTHPLACE

M1 Male White 29 Buffalo, NY
M2 Male White 33 Ann Arbor, MI
W1 Female White 23 Commack, NY
W2 Female White 32 Westfield, IA

Table 1:Study Participants – Demographic Details.

elements posterior to the head and neck, was used for radio
frequency (RF) signal reception. A 13-interleaf spiral gradi-
ent echo pulse sequence was used (TR = 6.164 msec, FOV =
200 × 200 mm, flip angle = 15◦). Scan slice thickness was
5 mm, located midsagittally; image resolution in the sagittal
plane was 68× 68 pixels (2.9× 2.9 mm). New image data
were acquired at a rate of 12.5 frames/second, and reconstructed
as 23.18 frames/sec. video using a sliding window technique.
More details about the rtMRI acquisition can be found in [12].

Subjects’ upper airways were imaged while they lay supine
in the MRI scanner. Stimuli were presented in large text on a
back-projection screen which subjects could read from within
the scanner bore without moving their head. Sentences were
presented one at a time, elicited at a natural speaking rate. Par-
ticipants were trained in the task before entering the scanner,
and were paid for their time. The average recording time for
each subject, including calibration and pauses between utter-
ances, was 2 hours.

2.3. Audio Acquisition

Audio was simultaneously recorded at a sampling frequency
of 20kHz inside the MRI scanner while subjects were imaged,
using a custom fiber-optic microphone noise-cancelling sys-
tem. Synchronization with the video signal was controlled
through the use of an audio sample clock derived from the scan-
ner’s 10MHz master clock, and triggered using the scanner RF
master-exciter unblank signal. More details about audio acqui-
sition, the noise cancellation technique, and audio-video syn-
chronization can be found in [13]. Subjects wore ear plugs
for protection from the scanner noise, but were still able to
hear loud conversation in the scanner room and to communi-
cate orally and aurally with the experimenters via an in-scanner
intercom system.

2.4. Phonetic alignment

Time-aligned phonetic transcriptions of all utterances in the
database were generated from the audio recordings, using the
freely available toolSailAlign [14]. Given the special audio
recording conditions, automatic phonetic alignment proved to
be especially challenging, and generic, one-pass, Viterbi-based
implementations failed to provide sufficiently accurate results.
By using an environment-adaptive, iterative alignment proce-
dure,SailAlignproved to be more robust, and has allowed us to
transcribe the MRI-TIMIT data with greater accuracy. An illus-
trative example of a phonetically-aligned utterance is given in
Fig. 1.

3. Database Description

3.1. Corpus

The corpus spoken by study participants was modeled after the
460-sentence MOCHA-TIMIT database [1]. The sentence set
is designed to elicit all phonemes of American English in a
wide range of prosodic and phonological contexts, with the
connected speech processes characteristic of spoken English,
including assimilations, lenitions, deletions and mergers. As
well as providing a phonologically comprehensive sample of
English, this corpus was chosen to allow for systematic com-
parison of the MRI data with mid-sagittal EMA data [1], and to
provide an additional resource for researchers who have previ-
ously made use of the MOCHA-TIMIT database.

A total of 98 minutes of speech data have been ac-
quired from the four speakers currently in the database (Ta-
ble 2). An example utterance is illustrated in Fig. 1. A
full list of sentences in the corpus is provided at the MRI-
TIMIT project page: http://sail.usc.edu/span/
mri-timit/index.php.

4. Database Analysis Tools

To facilitate use of the database, a number of tools are being
developed for inspection and analysis of these data. Brief de-
scriptions of some of the major tools are given below; further
details are found at the MRI-TIMIT project page:http://
sail.usc.edu/span/mri-timit/index.php, where
software, documentation, and example utterances may also be
downloaded.



ID #SENT #PHON MEAN TSent h:mm:ss
M1 464 14,312 2.73 sec 0:21:05
M2 460 14,194 2.59 sec 0:19:50
W1 460 14,189 2.55 sec 0:19:31
W2 463 14,181 2.52 sec 0:19:25
TOTAL 1,847 56,876 2.59 sec 1:19:51

Table 2: Total number of sentences, total number of phones,
mean sentence durations, and total duration of all utterances,
for each subject in the MRI-TIMIT database.

4.1. Data Inspection and Labeling

A graphical user interface has been developed to allow for audi-
tion, labeling, tissue segmentation, and acoustic analysis of the
MRI-TIMIT data. The primary purpose of this tool is to allow
users to browse the database frame-by-frame, inspect synchro-
nized audio and video segments in real-time or at slower frame
rates, and label speech segments of interest for further analy-
sis with the supporting tool set. The GUI facilitates automatic
formant and pitch tracking, and rapid semi-automatic segmen-
tation of the upper airway in sequences of video frames, for
visualization of tongue movement, or as a precursor to dynamic
parametric analysis of vocal tract shaping.

4.2. Automatic Articulator Tracking

A robust tool has been developed for unsupervised region seg-
mentation of the upper airway, jaw and supraglottal articula-
tors, which is more suitable for processing long sequences of
MR Images in the database. The segmentation algorithm [15]
uses an anatomically informed object model, and returns a set of
tissue boundaries for each frame of interest, allowing for quan-
tification of articulator movement and vocal tract aperture in the
midsagittal plane (Fig. 2).

Figure 2:Region segmentation of articulators in rtMRI data:
segment[kN

"
] in utterance/"w3~:kIN/ produced by Subject M1.

4.3. Direct Image Analysis

While tissue segmentation is invaluable in the study of tongue
shaping and vocal tract dynamics, other phonetic phenomena
are better examined in rtMRI data with direct image analysis,
which makes direct use of pixel intensities and their variation
over time, without appealing to conventional image processing
features such as edges [16]. Direct analysis of MRI sequences
can provide robust estimation of articulatory dynamics, without
the need for pre-processing, anatomical delineation, or tissue

tracking – techniques which are susceptible to segmentation er-
ror, and are typically labor- and computationally-intensive.

A number of tools have been developed to facilitate direct anal-
ysis of the MRI-TIMIT image data. Coordinative relationships
between articulators can be quantified by calculating pixel cor-
relation [16], and kinematics of constriction formation and re-
lease can be estimated directly from regional pixel intensity
variation in MR Image sequences. These approaches have been
used to automatically determine constriction location and kine-
matic differences between stops [17], and intergestural timing
relationships in consonants composed of multiple gestures [18],
and are directly applicable to the data in MRI-TIMIT.

5. Illustrative Applications

As a large-scale, multi-speaker corpus in which the entire upper
airway is imaged dynamically, the MRI-TIMIT database creates
opportunities for research in a number of areas which have not
been easily explored using traditional speech corpora.

5.1. Phonetic and Phonological Analysis

5.1.1. Deriving Representations from Data

Because it provides global information about the articulatory
space compared to data obtained using flesh-point sensing
modalities, rtMRI can offer new insights into articulatory repre-
sentations. Enhanced articulatory representations derived from
rtMRI data have the potential to inform work in phonetic and
phonological theory, and speech and speaker modelling.

5.1.2. Role of Variability

The inclusion of data from multiple speakers allows for the
study of subject-specific production strategies, production in-
variants, and the influence of individual speaker morphology on
articulatory and acoustic goals of production. rtMRI data are es-
pecially well suited to these topics because the morphological
characteristics of speakers are simultaneously captured along
with their production kinematics, and because speakers are not
required to pose their articulators, as with static MRI. We have
begun to use MRI-TIMIT to quantify individual differences in
the size, shape and relative proportions of the various articula-
tors [19], and this continues to be a topic of active investigation.

5.1.3. Characterizing Place of Articulation

Phonetic methodologies other than palatography and X-ray are
inherently unsuitable for characterizing place of articulation in
fine detail. The utility of EMA for analyzing coronal articula-
tion, for example, depends critically on the way that sensor coils
are located on the front of the tongue; the optimal location will
vary between speakers and utterances, is not fixed, and cannot
be known beforehand.

Not only does rtMRI interfere less with articulation than
flesh-point tracking, it provides a rich source of information
about the way in which the tongue contacts the passive artic-
ulators for different consonants, speakers, speech styles, and in
different vowel contexts. An algorithm developed to automati-
cally detect the constriction center forVCV sequences in rtMRI
data [20] is providing new insights into consonant kinematics
and phonological representations [17], and is directly applica-
ble to the data in MRI-TIMIT.



5.2. Modeling and Applications

5.2.1. Articulatory-acoustic Mappings

A central problem in phonological theory is characterizing the
many-to-one mapping from representations in the speech artic-
ulatory space to acoustic space [21, 22]. The problem is com-
pounded by our incomplete knowledge of the articulatory goals
of production, but rtMRI provides a rich new source of infor-
mation which can inform research in this domain. This in turn
can simplify the modeling of the articulatory-acoustic map and
lead to more accurate estimates of articulatory features from the
acoustic signal in acoustic-to-articulatory inversion.

5.2.2. Dynamic Articulatory Modeling

rtMRI speech production data can facilitate research in the dy-
namic articulatory modeling of the full vocal tract shape. In
our ongoing work, we investigate the application of statistical
graphical models that can capture the spatio-temporal depen-
dencies between various articulators in a data-driven manner
[23, 24]. Findings in this area can potentially also inform theo-
ries of speech production. To this end, the MRI-TIMIT database
represents a novel experimental platform with which to link
speech theory with realistic observations.

5.2.3. Automatic Speech Recognition

Dynamic articulatory data have the potential to inform ap-
proaches to automatic speech recognition (ASR) [7, 8]. Because
it provides such a rich source of global information about vocal
tract dynamics during speech production, it is worth investigat-
ing the discriminatory power of rtMRI-derived production fea-
tures in ASR approaches. Additionally, examining the extent to
which production-oriented features can provide complementary
information to that provided by acoustic features, will offer fur-
ther insights into the role of articulatory knowledge in automatic
speech recognition [24].

6. Future Directions
The MRI-TIMIT database currently consists of midsagittal data
from four speakers, and a collection of supporting tools. The
goal of this project is to build on this foundation by adding more
types of data acquired from more speakers, and to expand the
toolset to allow for more sophisticated inspection and analysis
of these data. The database will initially be augmented with
data from more speakers of General American English, but ul-
timately also with speakers of other varieties of English, and
speakers of other languages. We intend to acquire video with
higher frame-rates and improved SNR, and to incorporate data
acquired from imaging planes other than midsagittal, including
mid-lingual coronal cross-sections.
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