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Abstract
We present a method for speech enhancement of data col-
lected in extremely noisy environments, such as those
found during magnetic resonance imaging (MRI) scans.
We propose a two-step algorithm to perform this noise
suppression. First, we use probabilistic latent com-
ponent analysis to learn dictionaries of the noise and
speech+noise portions of the data and use these to factor
the noisy spectrum into estimated speech and noise com-
ponents. Second, we apply a wavelet packet analysis in
conjunction with a wavelet threshold that minimizes the
KL divergence between the estimated speech and noise
to achieve further noise suppression. Based on both ob-
jective and subjective assessments, we find that our al-
gorithm significantly outperforms traditional techniques
such as nLMS, while not requiring prior knowledge or
periodicity of the noise waveforms that current state-of-
the-art algorithms require.
Index Terms: rtMRI, noise suppression, wavelets,
pLCA, dictionary learning.

1. Introduction
Speech science researchers use a variety of methods to
study articulation and the associated acoustic details of
speech production. These include Electromagnetic Ar-
ticulography [1] and x-ray microbeam [2] methods that
track the movement of articulators while subjects speak
into a microphone. Data from these methods offer excel-
lent temporal details of speech production. Such meth-
ods, however, are invasive and do not offer a full view of
the vocal tract. On the other hand, methods using real-
time MRI (rtMRI) offer a non-invasive method for imag-
ing the vocal tract, affording access to more structural
details [3]. Unfortunately, MRI scanners produce high-
energy broadband noise that corrupts the speech record-
ing. This affects the ability to analyze the speech acous-
tics resulting from the articulation and requires additional
schemes to improve the audio quality.

The Least Mean Squares (LMS) algorithm is a pop-
ular technique for signal denoising. The algorithm esti-
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mates the filter weights of an unknown system by mini-
mizing the mean square error between the denoised signal
and a reference signal. This approach removes noise from
the noisy signal very well, but it severely degrades the
quality of the recovered speech. Bresch et al. proposed
a variant to the LMS algorithm in [4] to remove MRI
noise from noisy recordings. This method uses knowl-
edge of the MRI pulse sequence to design an artificial
reference “noise” signal that can be used in place of a
recorded noise reference. We found that this method out-
performs LMS in denoising speech corrupted with noise
from certain types of pulse sequences. Unfortunately, it
performs rather poorly when the noise frequencies are
spaced closely together in the frequency domain. Fur-
thermore, the algorithm creates a reverberant artifact in
the denoised signal, which makes speech analysis chal-
lenging. The LMS formulation assumes additive noise,
so these algorithms may not perform well in the presence
of convolutive noise in the signal, which we encounter
during MRI scans.

Source separation techniques provide a way to sepa-
rate the speech and noise. Duan et al. proposed a prob-
abilistic component analysis (PLCA) algorithm in [5].
This algorithm learns the dictionaries and their associ-
ated time activation weights for the speech and noise,
thus separating the speech from noise. In recent decades,
wavelets have been used for denoising speech and images
[6]. Discrete wavelet transforms, wavelet packet analysis,
and lifting have been developed to aid signal denoising.
Both PLCA and wavelet analysis are useful for remov-
ing convolutive noise from signals because there is no
underlying assumption of additive noise. We propose an
algorithm that takes advantage of source separation and
wavelet analysis to denoise speech recorded in an MRI
scanner.

This paper is organized as follows. Section 2 dis-
cusses properties of MRI noise. In Section 3, we describe
the method we used to perform denoising. Section 4 dis-
cusses the results of our method on data acquired from
MRI scans and artificially-created noisy speech. Finally,
we state our conclusions and future work in Section 5.



2. MRI Noise
A primary source of MRI noise arises from Lorentz
forces acting on receiver coils in the body of an MRI
scanner. These forces cause vibrations of the coils,
which impact against their mountings. The result is a
high-energy broadband noise that can reach as high as
115 dBA [7]. The noise corrupts the speech recording,
making it hard to listen to the speaker, and can obscure
important details in speech.

MRI pulse sequences typically used in rtMRI produce
periodic noise. The fundamental frequency of this noise,
i.e., the closest spacing between two adjacent noise fre-
quencies in the frequency spectrum, is given by:

f0 =
1

repetition time× number of interleaves
Hz (1)

The repetition time and number of interleaves are scan-
ning parameters set by the MRI operator. Choice of these
parameters inform the spatial and temporal resolution of
the reconstructed image sequence, as well as the spectral
characteristics of the generated noise. Importantly, the
periodicity of the noise allows us to design effective de-
noising algorithms for time-synchronized audio collected
during rtMRI scans. For instance, the algorithm proposed
by Bresch et al. [4] relies on knowing f0 to create an arti-
ficial “noise” signal which can then be used as a reference
signal by standard adaptive noise cancellation algorithms.

However, a few pulse sequences do not exhibit this
exact periodic structure. In addition, there are other use-
ful sequences that are either periodic with an extremely
large period, resulting in very closely-spaced noise fre-
quencies in the spectrum (i.e., f0 is very small), or are
periodic with discontinuities that can introduce artifacts
in the spectrum. To handle these cases, it is essential that
denoising algorithms do not rely on periodicity. One ex-
ample of such sequences which we will consider in this
article is the Golden Ratio (GR) sequence [8], which al-
lows for retrospective and flexible selection of temporal
resolution of the reconstructed image sequences (typical
rtMRI protocols do not allow this desirable property).

3. Denoising Algorithm
We propose a denoising algorithm that uses PLCA and
wavelet packet analysis. A noisy recording is given to
PLCA, which separates the signal into estimated speech
and noise components. Then, the estimated speech is
passed to a wavelet packet algorithm for further noise
removal. The result of the wavelet packet algorithm is
a denoised speech recording. Figure 1 shows the spec-
trograms of the signal at each stage of the algorithm. The
following subsections describe PLCA and wavelet packet
analysis in greater detail.

3.1. Step 1: PLCA
PLCA uses non-negative matrix factorization (NMF) to
factor a spectrogram of the noisy speech into noise and
speech dictionaries and their corresponding time activa-
tion weights. We first train the algorithm with the MRI
noise to learn a noise dictionary and its time activation
weights. Once learned, the noise dictionary stays fixed
for the duration of the PLCA algorithm. We obtain the
noise-only recording from the beginning 1 second of the
noisy speech recording before the speaker speaks (it is
usually the case that the speaker speaks at least 1 second
after the start of the recording).

After training on the noise, we give PLCA the noisy
speech spectrogram for source separation. The algorithm
takes each frame of the spectrogram and computes the
KL divergence between the spectrogram frame and the
current estimate of the noise spectrum. If the KL diver-
gence is low, then it updates the time activation weights
of the noise. If the KL divergence is high, then it updates
the speech dictionary and the time activation weights for
the speech and noise. PLCA uses the EM algorithm to
update the speech dictionary.

After the algorithm processes all the spectrogram
frames, it returns an estimate of the speech and noise.
The algorithm performs well at removing noise in silence
regions and suppressing some of the noise in speech re-
gions. To remove the residual noise in the speech es-
timate, we turn to wavelet packet analysis. Nonethe-
less, PLCA removes enough noise to make wavelet
packet analysis a viable option for denoising; perform-
ing wavelet packet analysis on the original noisy speech
recording does not work well because the energy of the
MRI noise is too high compared to the energy of the
speech.

3.2. Step 2: Wavelet Packet Analysis
Wavelet packet analysis iteratively decomposes a signal
into lowpass and highpass bands using a quadrature mir-
ror filter (QMF) to produce different levels of frequency
resolution. We pass the estimated speech from PLCA into
a D-level wavelet packet, which yields wavelet coeffi-
cients in 2D subbands.

We threshold the wavelet coefficients to remove the
noise. Tabibian et al. proposed a threshold in [9] that
minimizes the symmetric KL divergence between the
noisy speech coefficients and noise coefficients in the
range of −λ to λ, where λ is the threshold value. With
this formulation, they solved for the threshold to get:

λ =
σ̂2
Nk

ξk

√
2 (ξk + ξ2k) ln

(√
1 +

1

ξk

)
(2)

where

ξk =
σ̂2
Xk

σ̂2
Nk

(3)



(a) Noisy speech (b) Estimated speech (c) Denoised speech

Figure 1: Spectrograms of the TIMIT sentence “Don’t ask me to carry an oily rag like that” spoken by a male. PLCA
processes the recording from the MRI scanner (a) to produce a speech estimate (b). Wavelet analysis subsequently
removes residual noise in the estimated speech to produce the denoised speech (c).

Here, σ̂2
Nk

is the estimated variance of the noise coeffi-
cients in subband k of level D and σ̂2

Xk
is the estimated

variance of the noisy signal coefficients in subband k of
level D, k = 1, 2, . . . , 2D. To compute the threshold, we
need an estimate of the noise. If the MRI noise is peri-
odic, we can estimate the noise with

v[n] =
∑
k

αk cos(2πf0kn) (4)

where f0 is calculated using Equation 1 and αk is a scalar
that shapes the spectrum of v[n] to match the spectral
shape of the MRI noise. For non-periodic MRI noise, we
can estimate the noise from the beginning 1 second of the
estimated noise calculated by PLCA. This gives us the
flexibility to denoise speech corrupted by non-periodic
MRI noise. Since the noise in our experiments is peri-
odic, we use v[n] for the noise estimate because it per-
forms marginally better than estimating the noise from
PLCA’s noise estimate. Once we calculate the threshold,
we soft threshold the wavelet coefficients in each subband
and reconstruct the denoised signal from the thresholded
coefficients.

Soon et al. reported very little difference in the SNR
of the denoised signal when using different wavelets,
even accounting for varying SNR of the noisy signal
and male/female speakers [10]. They evaluated denois-
ing performance using biorthogonal, Daubechies, Coiflet,
and Symmlet wavelets with different wavelet orders. Our
experiments corroborated their findings; we found very
little difference in the quality of the denoised signal,
both quantitatively and perceptually, when using differ-
ent wavelets. Thus, we empirically found the Beylkin
wavelet to give the maximum noise suppression, and we
used this wavelet for the wavelet analysis and synthesis.

4. Experimental Evaluation
We tested our algorithm on a set of 6 TIMIT utterances
recorded in an MRI scanner, with two different scanner
settings that produce two different periodic noises we
will call seq1 and GR. The drawback with using these
recordings for evaluation is the lack of a clean reference

signal. Consequently, we supplemented our evaluation
with clean speech recordings from the Aurora 5 digits
database. We added the two MRI noises to the clean
speech with an SNR of −6 dB, which is similar to the
SNR in the TIMIT utterances.

We compared the performance of our proposed algo-
rithm to the normalized LMS algorithm (denoted LMS-1)
and the LMS variant proposed in [4] (denoted LMS-2).
For LMS-1, we used a filter length of 3000 and a step
size of 1. The LMS-2 algorithm did not need any param-
eter tuning; these are set by the algorithm and vary based
on the MRI pulse sequence used to acquire the recording.
LMS-2 is known to perform well with seq1 noise and is
currently used to remove seq1 noise from speech record-
ings. However, its performance degrades with GR noise,
preventing speech researchers from collecting better MRI
images using GR pulse sequences.

4.1. Quantitative Performance Metrics
To quantify the performance of our denoising algorithm,
we calculated the noise suppression, which is given by:

noise suppression = 10 log

(
Pnoise

P̂noise

)
(5)

where Pnoise is the power of the noise in the noisy signal
and P̂noise is the power of the noise in the denoised sig-
nal. We use a voice activity detector (VAD) to find the
noise-only regions in the denoised and noisy signals. We
calculate the noise suppression measure instead of SNR
because we do not have a clean reference signal for the
TIMIT utterances.

Ramachandran et al. proposed the log-likelihood ra-
tio (LLR) and distortion variance measures in [11] for
evaluating denoising algorithms. The LLR calculates the
mismatch between the spectral envelopes of the clean sig-
nal and the denoised signal. It is calculated using:

LLR = log
aT
ŝ Rsaŝ

aT
s Rsas

(6)

where as and aŝ are p-order LPC coefficients of the
clean and denoised signals respectively, and Rs is a



(p+1)×(p+1) autocorrelation matrix of the clean signal.
An LLR of 0 indicates no spectral distortion between the
clean and denoised signals, while a high LLR indicates
the presence of noise and/or distortion in the denoised
signal. The distortion variance is given by:

σ2
d =

1

L
‖s[n]− ŝ[n]‖2 (7)

where s[n] and ŝ[n] are the clean and denoised signals
respectively, and L is the length of the signal. A low dis-
tortion variance is more desirable than a high distortion
variance.

4.2. Qualitative Performance Metrics
To supplement the quantitative results, we created a lis-
tening test to compare the denoised signals from our pro-
posed algorithm, as well as LMS-1 and LMS-2. We cre-
ated 12 sets of audio clips in 4 different environments:
TIMIT utterances with seq1 noise, TIMIT utterances with
GR noise, Aurora digits with seq1 noise, and Aurora dig-
its with GR noise. Each environment contained 3 sets
of audio clips. Each set contained a noisy signal and
denoised versions of the signal from the proposed algo-
rithm, LMS-1, and LMS-2. For the sets with Aurora dig-
its, we also included the clean signal. Thus, each set with
TIMIT utterances had 4 clips and each set with Aurora
digits had 5 clips. The sets and the clips within each set
were randomized and presented in an online survey. 25
volunteers ranked each clip within a set from 1 to 4 or 5,
with 1 meaning best quality and intelligibility.

4.3. Results
Objective measures: Table 1 lists the noise suppression
for the TIMIT utterances. Table 2 shows the noise sup-
pression, LLR, and distortion variance results for the Au-
rora digits. For TIMIT utterances corrupted by seq1 and
GR noises, our proposed algorithm suppresses noise bet-
ter than LMS-1 and LMS-2. Our algorithm performs
slightly worse than LMS-1 for Aurora digits corrupted
by seq1 and GR noises. This is because the noise in the
Aurora recordings is purely additive, while the noise in
the direct MRI TIMIT recordings is more convolutive in
nature. Our experiments confirmed that LMS-2 performs
better on seq1 noise than GR noise, both for the TIMIT
utterances and Aurora digits. Importantly, our proposed
algorithm performs comparably to LMS-2 in seq1 noise.
The LLR and distortion variance results show that our
algorithm reconstructed the spectral characteristics of the
clean signal more faithfully than LMS-1 and LMS-2. Pre-
serving spectral characteristics of the signal is a key re-
sult when considering denoising speech for subsequent
speech analysis and modeling.

Subjective measures: Table 3 shows the median rank-
ings obtained from the listening test for the audio clips
in the 4 environments. A nonparametric Kruskal-Wallis

Table 1: Noise suppression results for TIMIT sentences.

Proposed LMS-1 LMS-2
seq1 19.27 18.01 18.79
GR 24.1 18.37 9.17

Table 2: Noise suppression (NS), LLR, and distortion
variance (DV) results for the Aurora 5 digits.

Metric Sequence Proposed LMS-1 LMS-2

NS (dB) seq1 30.23 32.55 26.53
GR 24.14 27.88 10.91

LLR seq1 0.17 0.4 0.42
GR 0.11 0.41 0.33

DV (×10−5) seq1 7.52 34.8 21.4
GR 9.56 35.8 37.7

Test showed that the medians of rankings obtained for
each denoising algorithm were significantly different at
the α = 99% level. We then used the post-hoc Wilcoxon
rank-sum test to check for pairwise differences in the me-
dian ranks. The Wilcoxon test results show that the me-
dian ranks for each pair of clips are significantly different
at the α = 99% level, except for the case of the LMS-
1/noisy pair for the TIMIT utterances with seq1 noise en-
vironment. Hence, we can say with some certainty that
listeners ranked our algorithm as the best for removing
GR noise and second best for removing seq1 noise.

5. Conclusions
We have proposed a denoising algorithm to remove noise
from speech recorded in an MRI scanner. The two-step
algorithm uses PLCA to separate the noise and speech,
and wavelet packet analysis to further remove noise left
by the PLCA algorithm. Objective measures show that
our proposed algorithm achieves better noise suppression
and less spectral distortion than LMS methods. A lis-
tening test shows that our algorithm yields higher quality
and more intelligible speech than LMS methods.

To further extend our work, we will compare our pro-
posed algorithm to other denoising methods, such as sig-
nal subspace and model-based approaches. Additionally,
we need to evaluate how well our algorithm aids speech
analysis, such as formant extraction. Finally, we will
evaluate the performance of our algorithm in other low-
SNR speech enhancement scenarios, such as those in-
volving Gaussian, Cauchy, babble, and traffic noises.

Table 3: Median rankings of the audio clips for the four
environments

ENVIRONMENT ALGORITHM
Clean Proposed LMS-1 LMS-2 Noisy

TIMIT, seq1 noise 2 3 1 4
TIMIT, GR noise 1 2 3 4

Aurora, seq1 noise 1 3 4 2 5
Aurora, GR noise 1 2 3 4 5
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