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A B S T R A C T

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that severely impacts affected
persons’ speech and motor functions, yet early detection and tracking of disease progression remain chal-
lenging. The current gold standard for monitoring ALS progression, the ALS functional rating scale - revised
(ALSFRS-R), is based on subjective ratings of symptom severity, and may not capture subtle but clinically
meaningful changes due to a lack of granularity. Multimodal speech measures which can be automatically
collected from patients in a remote fashion allow us to bridge this gap because they are continuous-valued and
therefore, potentially more granular at capturing disease progression. Here we investigate the responsiveness
and sensitivity of multimodal speech measures in persons with ALS (pALS) collected via a remote patient
monitoring platform in an effort to quantify how long it takes to detect a clinically-meaningful change
associated with disease progression. We recorded audio and video from 278 participants and automatically
extracted multimodal speech biomarkers (acoustic, orofacial, linguistic) from the data. We find that the timing
alignment of pALS speech relative to a canonical elicitation of the same prompt and the number of words used
to describe a picture are the most responsive measures at detecting such change in both pALS with bulbar (n =
36) and non-bulbar onset (n = 107). Interestingly, the responsiveness of these measures is stable even at small
sample sizes. We further found that certain speech measures are sensitive enough to track bulbar decline even
when there is no patient-reported clinical change, i.e. the ALSFRS-R speech score remains unchanged at 3 out
of a total possible score of 4. The findings of this study have the potential to facilitate improved, accelerated
and cost-effective clinical trials and care.
1. ALS & speech biomarkers

Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neuron
disease with an estimated global prevalence of 4.42 per 100,000 per-
sons [1]. Neuronal death leads to muscular atrophy, loss of voluntary
motor control in persons with ALS (pALS) and a median survival of
3 to 5 years [2] after disease onset. Up to 30% of pALS present
with bulbar onset of ALS, characterized by a rapid loss of speech and
swallowing functions [3], while the rest present with non-bulbar onset
characterized by muscular atrophy in the limbs and the trunk [4].
However, a vast majority of non-bulbar onset pALS eventually also
exhibit bulbar symptoms in the course of their disease progression [2].
The heterogeneous nature of ALS onset and progression underlines
the importance of identifying efficacious biomarkers to improve the
predictive modeling of disease progression.

The current clinical gold standard to track disease progression in
ALS is the ALS Functional Rating Scale - Revised (ALSFRS-R) [5], a
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questionnaire comprising 12 questions across four functional domains
impacted by ALS [6]: bulbar, fine motor, gross motor and respiratory.
However, there is evidence that the ALSFRS-R scale may track disease
progression in a non-linear manner and may lack sensitivity in the early
stages of bulbar disease onset [7–9]. For example, Van Unnik et al. have
pointed out that such survey-based outcomes have ‘‘limited ability to
detect subtle changes over time’’ [10].

Speech and oro-facial biomarkers have shown great promise for
remote assessment and monitoring of neurological and mental health
[11–15]. Indeed, many studies have computed and demonstrated the
efficacy of multiple speech metrics that capture how a given disease im-
pacts multiple domains of speech performance — be it motor, anatom-
ical, cognitive, linguistic or affective [11,16–18]. Objective speech and
facial kinematic measures have been shown to be very powerful in
early detection of bulbar symptoms [19–25] and the progression of
bulbar decline in pALS [26–30]. Eshghi et al. [29] demonstrated that
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speaking rate and speech intelligibility can predict speech loss based
on pre-defined thresholds and that these objective speech measures are
more responsive to functional decline than patient-reported ALSFRS-
R scores. Yunusova et al. [27] suggested that changes in kinematics
of the jaw and lips are detectable prior to changes in vowel acous-
tics and speech intelligibility. Stegmann et al. [28] demonstrated that
disease progression in bulbar onset and non-bulbar onset pALS can be
predicted using speaking rate and articulatory precision through data
collected remotely via a mobile application. Speaking rate has been
consistently found to be an important biomarker for early diagnosis and
stratification in both these studies and other studies, along with other
timing-related measures like percentage pause time, speaking duration
and others [22,23,31,32]. Prior work by us [30] has shown that some
timing-related speech biomarkers, collected remotely through a con-
versational dialog platform, have the requisite responsiveness and sen-
sitivity to track speech decline in the context of clinical interventional
trials targeting neurodegenerative disorders. To establish the efficacy of
multimodal biomarkers in tracking disease progression, it is important
to consider what constitutes a minimal clinically-important difference
(MCID) [33–35] and whether these biomarkers show change greater
than any measurement errors. It is important that these multimodal
biomarkers are also sensitive in detecting bulbar decline, which could
be well before corresponding changes are observed in the relevant
ALSFRS-R functional scores or equivalent clinical scales.

To address the need for improved biomarkers of bulbar disease
progression in ALS, we explored the responsiveness, sensitivity and
clinical utility of multimodal speech metrics2 – automatically extracted
via a cloud-based multimodal dialog platform — by formulating the
following research questions:

1. Optimal Feature Selection. Which speech and facial biomarkers
are the best at capturing differences between bulbar and non-
bulbar onset ALS?

2. Responsiveness to Longitudinal Change. How is the rate of change
in these speech and facial biomarkers different for bulbar and
non-bulbar onset pALS? Can we quantify how different the rates
are?

3. Time to Detect Change. How many weeks does it take to detect
a clinically meaningful change in these biomarkers from disease
onset in both cohorts of pALS, keeping in mind that ALS is a
rapidly-progressing disease?

4. Effect of Sample Size. How does the responsiveness and time to
detect change depend on the sample size of the cohort?

5. Sensitivity Relative to Clinical Standard. Can these metrics de-
tect speech deterioration during intervals of time when patients
report no speech changes on the ALSFRS-R instrument?

The present study is partially inspired by the work by Stegmann
t al. [28] who applied growth curve models to model longitudinal
rajectories of speaking rate and articulatory precision in pALS with
ulbar onset and non-bulbar onset. We extend this work in several key
spects: (i) by analyzing a considerably larger dataset (278 participants
otal) that was recorded using an interactive dialog system; (ii) by
xploring a large multimodal feature set to find the most promising
eatures for the task at hand; (iii) by conducting a sample size analysis;
nd (iv) by putting the longitudinal modeling results into context with
espect to MCID thresholds (based on work by Stipancic et al. [34]) and
LSFRS-R scores. As mentioned previously, we have addressed some
f these research questions using a very narrow set of speech timing
eatures in [30]. However, this is the first data-driven study, to the
est of our knowledge, to look at the responsiveness and sensitivity

2 A note on the terminology used in this paper: We use the term metric to
denote the general concept of speech and facial characteristics (e.g., speaking
rate), and we use the term feature to denote a metric that was extracted for a
pecific stimulus or task (e.g., speaking rate for a reading passage task).
2
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of remotely-collected multimodal (i.e., speech, facial and text based)
digital biomarkers extracted using a structured conversational dialog
with a virtual agent. The advantage of such self-driven assessments is
that there is no software or hardware installation required and data
collection can be done using the participants’ devices.

The rest of this paper is organized as follows. Section 2 provides
information about the study design and the dataset. The dialog system
that was used for data capture is described in Section 3. Section 4
presents all methodological details, including automatic feature extrac-
tion, feature selection, MCID estimation, and the longitudinal analysis
based on growth curve models. Our findings are presented in Section 5,
before we conclude this paper with the discussion in Section 6.

2. Data and study design

The study protocol was approved by an external Institutional Re-
view Board3 on August 11, 2020. Participants were recruited by Every-
thingALS and the Peter Cohen Foundation.4 All participants provided
informed consent upon recruitment, prior to their first assessment on
the Modality platform. Fig. 1 provides an overview of the study
procedures. Data was collected between 2020-11-03 and 2023-10-
06 from 143 pALS (70 female, mean age ± standard deviation =
60.4 ± 10.2 years, Bulbar onset: n = 36, Non-Bulbar onset: n = 107)
and 135 age and sex-matched controls (71 female, mean age ± standard
deviation = 59.9 ± 10.3 years). For age matching, a tolerance threshold
f ±3 years was set.5 A total number of 6,816 recording sessions were
onducted (3,388 sessions from pALS – 598 bulbar onset and 2,790
on-bulbar onset – and 3,428 sessions from healthy controls). Out
f 3,388 sessions from pALS, the ALSFRS-R total score was available
or 1,879 sessions. Table 1 summarizes the participant statistics and
rovides information on the ALSFRS-R scores at baseline (participants’
irst session).

. Multimodal dialog system

The Modality service, a cloud-based multimodal dialog system [36–
8], was used to collect video recordings from participants, who en-
aged in a structured conversation with Tina, a virtual dialog agent
see Fig. 2 for a schematic illustration of the dialog platform). To ensure
ata privacy and protection of personal health information (PHI), the
odality service is fully compliant with the Health Insurance Porta-

ility and Accountability Act (HIPAA) and the General Data Protection
egulation (GDPR; European Union). Each participant is provided with
unique website link to the Modality platform, which they can click

n to start the assessment using a browser and device of their choice
microphone and webcam required). After completing microphone and
amera checks to ensure data collection of good quality, participants
ngage in a conversation with Tina. The dialog protocol elicits different
ypes of speech samples that are inspired by prior work [39–42] and
lso utilized in similar remote monitoring efforts [15,43]. In this data
ollection, the following tasks were included: (a) read speech (sentence
ntelligibility test (SIT), 5–15 words; Bamboo reading passage (RP),
9 words), (b) measure of diadochokinesis (DDK, rapidly repeating
he syllables /pAtAkA/), (c) single breath counting (SBC), and (d)
ree speech in form of a picture description task (PD). During the
ssessment, Tina asks participants to do the aforementioned tasks. Due
o the conversational nature, participants receive feedback (e.g., when
hey spoke shorter than a predefined threshold for a given task), and
ina can provide demonstrations of how a task should be performed.

3 retrieved on 2023-12-29, protocol number: 2020-06-PI42.
4 retrieved on 2023-12-29.
5 For some participants, there was no match in the healthy controls cohort.

s a result, the final dataset contained less healthy controls than people with

LS.
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Fig. 1. Schematic of study design and modeling procedures.
Table 1
Participant statistics. F: number of female participants, M: number of male participants, BL: baseline (first session). The time span first-to-last is the mean number of days between
participants’ first and last session in the data collection. The large variation of the number of samples per participant in this data collection is due to the continuous and ongoing
recruitment of new participants in this study. Statistics are reported as median; mean (standard deviation) for ALSFRS-R scores, and as mean (standard deviation) otherwise.

F M Age (years) #Sess. ALSFRS-R ALSFRS-R #Sessions Time span
Baseline speech BL per participant first-to-last (days)

Bulbar onset 18 18 61.6 (11.9) 598 38.5; 38.9 (6.1) 3.0; 2.7 (0.8) 16.6 (19.4) 232.8 (222.2)
Non-bulbar onset 52 55 59.9 (9.6) 2,790 38.0; 35.6 (7.4) 4.0; 3.6 (0.6) 26.1 (25.9) 377.5 (305.1)

All pALS 70 73 60.4 (10.2) 3,388 38.0; 36.4 (7.2) 4.0; 3.4 (0.8) 23.7 (24.7) 341.1 (292.6)
Healthy controls 71 64 59.9 (10.3) 3,428 – – 25.4 (24.5) 317.7 (262.6)
3
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Fig. 2. Schematic diagram of the Modality dialog platform.
Participants’ audio and video streams are uploaded to the cloud and
segmented in real-time for downstream analysis. After dialog com-
pletion, participants were asked to fill out the ALS functional rating
scale — revised (ALSFRS-R) [5], the standard clinical scale to capture
progression in ALS.6

4. Methods

4.1. General experimental setup

All analyses were performed using Python (v3.10) and R (v4.3.1).
The following open-source Python libraries were used: Pandas (v1.5.3
[45,46]), Numpy (v1.24.3 [47,48]), scikit-learn (v1.2.2 [49]), Mat-
plotlib (v3.7.1 [50]), spaCy7 (v3.5.3), and SciPy (v1.10.1 [51]). The
following R packages were used: ROCR (v1.0.11 [52]), pROC (v1.18.2
[53]), ggplot2 (v3.4.4 [54]), nlme (v3.1.162 [55]), and the rpy28

interface (v3.5.13).

4.2. Speech and facial metrics

Our multimodal dialog platform is equipped with analytics modules
that automatically extract metrics to capture information from acoustic
(energy, timing, voice quality, spectral), facial (articulatory kinematics,
range of motion, eye and facial movement), motoric (finger tapping
kinematics) and textual (lexico-semantic, sentiment) domains during
the different tasks. Table 2 provides an overview of the extracted
metrics.

We use Praat (v6.2.17) [56] and the Montreal Forced Aligner
(v2.0.0.a22) [57] to extract speech metrics, including timing measures,
such as percentage of pause time (PPT; proportion of the total duration
of all pauses to the total duration of the utterance), rate measures
such as speaking rate (the total number of words in the passage (99)
divided by the speaking duration, or time taken to read the Bamboo
passage [58]), frequency related measures, such as fundamental fre-
quency (F0), energy related measures, such as signal-to-noise ratio, and
voice quality measures, such as the harmonics-to-noise ratio (HNR).
We also computed Canonical Timing Alignment (CTA; %), a number
between 0% (non-alignment) and 100% (perfect alignment), measured
as the normalized inverse Levenstein edit distance between words
and silence boundaries (here the participant’s predicted word-level

6 Participants filled out the ROADS questionnaire [44] for a subset of
sessions instead of the ALSFRS-R. Therefore, the ALSFRS-R score was not
available for all sessions.

7 retrieved on 2023-12-29.
8 retrieved on 2023-12-29.
4

Fig. 3. Illustration of the 14 facial landmarks used to calculate the facial metrics used
in this study and the inter-caruncular distance (shown in red) between the inner canthi
of the eyes (RELC and LERC).

timing information, derived using the Montreal Forced Aligner [59] is
compared to a canonical production by Tina [60]).

Facial video metrics are based on facial landmarks generated with
MediaPipe Face Mesh [61]. First, MediaPipe Face Detection, which is
based on BlazeFace [62], is used to determine the (x, y)-coordinates of
the face for every video frame. Then, facial landmarks are extracted
using MediaPipe Face Mesh. We use 14 key landmarks to compute
metrics like the speed of articulators (jaw, lower lip), surface area of
the mouth, and eyebrow raises. These landmarks include center and
corners of the lips, jaw center, nose tip, center and corners of the
eyes, and the center of the eyebrows (see Fig. 3). Lastly, the features
are normalized by dividing them by the inter-caruncular or inter-
canthal distance, to handle variability across participant sessions due
to position and movement relative to the camera [63].

Linguistic metrics are computed for the picture description task
only, using the Python package spaCy. They are based on automatic
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Table 2
Overview of extracted metrics. For visual metrics, functionals (minimum, maximum, average) are applied to produce one value across
all video frames of an utterance. Visual distance metrics are measured in pixels and are normalized by dividing them by the intercanthal
distance (distance between inner corners of the eyes) for each participant. *specific to DDK task.

Domain Exemplar metrics

Audio

Energy shimmer (%), intensity (dB), signal-to-noise ratio (dB)
Timing speaking and articulation duration (sec.), articulation and speaking rate (WPM), percent

pause time (PPT, %), canonical timing agreement (CTA, %), cycle-to-cycle temporal
variability* (cTV, sec.), syllable rate* (syl./sec.), number of syllables*

Voice quality cepstral peak prominence (CPP, dB), harmonics-to-noise ratio (HNR, dB)
Frequency mean, max., min. fundamental frequency F0 (Hz), first three formants F1, F2, F3 (Hz),

slope of 2nd formant (Hz/sec.), jitter (%)

Text Lexico-semantic word count, percentage of content words, noun rate, verb rate, pronoun rate,
noun-to-verb ratio, noun-to-pronoun ratio, closed class word ratio, idea density

Video

Mouth (distances) lip aperture/opening, lip width, mouth surface area,
mean symmetry ratio between left and right half of the mouth

Lip/Jaw Movement velocity, acceleration, jerk, and speed of lower lip and jaw center
Eyes number of eye blinks per sec., eye opening, vertical displacement of eyebrows
transcriptions obtained with AWS Transcribe9 and include lexico-
semantic metrics, such as word count, noun rate, and noun-to-verb
ratio.

4.3. Preprocessing

Generally, every metric is computed for each task of the assessment
on an utterance level, e.g., speaking rate for the reading passage, or
speaking duration for the SBC task. In the present work, we refer to
these task-metric combinations as features. For the SIT task, metrics
were aggregated across six SIT sentences by taking the mean values
over these utterances (i.e., speaking rate for SIT denotes the average
speaking rate across the six sentences).

To remove outlier values from speech and facial features, we em-
ployed a distribution-based outlier detection algorithm [64]. Possible
reasons for outlier occurrence include high-intensity background noise,
bad lighting conditions, or incorrectly performed tasks. First, all feature
values that are more than five standard deviations away from the
population mean are removed. These are considered extreme outliers,
which potentially skew the distribution mean. Such extreme events can
happen when the recorded data is corrupted, for example through a
poor network connection. The value of five standard deviations was em-
pirically chosen after carefully analyzing the data distributions. Then,
the mean is re-computed and values outside ±3 standard deviations are
flagged as outliers and removed from any further analysis.

For the feature selection procedure (Section 4.5), all features were
normalized to zero mean and unit variance. For the longitudinal anal-
ysis, where we look at one feature at a time, we decided to work
with raw, unnormalized values because this helps with interpreting the
intercepts and slopes of the growth curve models.
4.4. Clinically-meaningful change

To clearly define what feature changes count as clinically meaning-
ful, we use the concept of the minimal clinically-important difference
(MCID) [33,34]. The MCID is the smallest domain-specific change that
is considered to be clinically relevant [65]. It can be quantified as
a threshold for a change corresponding to clinical improvement or
deterioration [35] and is tied to an external anchor, which is considered
to be a clinical gold standard, the ALSFRS-R speech question in this
case. We calculated the MCID for all features for a corresponding one-
point change on the ALSFRS-R speech question where participants
are asked to rate their speech on the following scale with scores in
parentheses:

• Normal speech processes (4)
• Detectable speech disturbance (3)

9 retrieved on 2023-12-29.
5

• Intelligible with repeating (2)
• Speech combined with nonvocal communication (1)
• Loss of useful speech (0)

One approach to derive the MCID is using data-driven ROC anal-
ysis [66], which was also applied in [34]. The point representing
maximum sensitivity and specificity (closest to the top left corner) on
an ROC curve is determined as the optimal cutpoint corresponding
to the MCID value. MCID calculation was performed using the rpy2
package in Python along with the pROC [67] and ROCR [52] packages
in R [68]. The classes being discriminated were pALS who exhibited
a one-point decline in their ALSFRS-R speech score and those who
did not show any change in their ALSFRS-R speech score. For each
pALS, adjacent sessions (with at least 14 days between sessions) were
considered to calculate the change in every feature from the first
to the second session. For pALS in the one-point decline class, only
those adjacent sessions were taken into account where the decline was
observed.

4.5. Feature selection

All audiovisual metrics were extracted for each of the five speech
tasks in the protocol. Considering all valid task-metric combinations
as individual features results in a very large number of features. To
handle multicollinear features and identify a good set of representative
features, we applied hierarchical clustering on the Spearman rank-
order correlations, similar to the approach in [69]. For this feature
clustering approach, only healthy controls’ data was considered in
order to avoid data leakage in the experimental design – note that
all subsequent analyses focuses on patient data only – and because
data from healthy controls is most representative of normative feature
ranges and correlations between features. Ward’s method was used
for clustering and we plotted a dendrogram for visual inspection of
the feature clusters (see Fig. 4). A distance threshold of 1.0 to split
clusters10 was chosen manually to select clusters that represent sensible
feature groupings in terms of the domain (e.g. frequency or timing
related speech features) or the area of the face (e.g. features pertaining
to jaw movement). This threshold resulted in 27 clusters.

Next, a representative feature for every cluster was selected to
form the final feature set. Receiver operating characteristic (ROC)
curve analysis was used in a 5-fold cross validation setup to determine
the area under the ROC curve (AUC) for distinguishing bulbar onset
participants from non-bulbar onset participants (for every individual
feature). 5-fold cross validation was used to ensure generalizability. We
implemented it with sklearn’s StratifiedGroupKFold function, where

10 The maximum distance at which all features would be combined into one
single cluster was 5.4.
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Fig. 4. Dendrogram for visualizing feature clusters of acoustic, linguistic, and facial features (exemplary section with 11 out of 27 clusters). The dashed line shows the distance
threshold for splitting the clusters.
the samples were stratified by the class label non-bulbar/bulbar onset,
and it was ensured that there is no overlap of a participant’s data
between training and test folds. Table 3 shows the clusters and the
selected representative features. To further filter features, we imposed a
minimum threshold for the ROC-AUC. Only features with an AUC≥ 0.65
and for which the MCID was larger than the standard error of the mean
(SE) were considered in the longitudinal analysis (Section 4.6).11

11 AUC values were rounded to 2 digits after the decimal point before
determining the best feature in each cluster. Among the 17 resulting clusters
with AUC≥ 0.65 there was only one instance of a tie: the features SIT speaking
rate, RP speaking duration, and RP speaking rate all had an AUC of 0.84. We
6

4.6. Longitudinal analysis

Responsiveness and sensitivity of features over time was evaluated
using growth curve models (GCMs) [70], which provide a linear fit
for a non-linear mixed effects model to estimate the trajectory of a
metric over time with random slopes and intercepts for each par-
ticipant [28]. Growth curve models produce estimates of smoothed
trajectories of change over time by using observed repeated measures
of each individual, making it the ideal statistical method to answer the
research questions posed in this paper. The assumption here is that a

ran the responsiveness analysis for all three features and report results for the
best performing one, RP speaking duration.
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Table 3
Feature clusters from hierarchical clustering and the selected representative features. AUC represents the
mean AUC for distinguishing bulbar onset and non-bulbar onset pALS samples across five cross validation
folds. Only features with AUC> 0.65 were included in the longitudinal analyses. Resp. p are the p-values of
the responsiveness analysis (see Table 4) and an asterisk (*) indicates features that showed signal in the
sensitivity analysis.
LL: lower lip, JC: jaw center, RP: reading passage, DDK: diadochokinesis, PD: picture description, SBC: single
breath counting, SIT: sentence intelligibility test.
Cluster description Selected representative AUC Resp. p

Timing: duration and rates Speaking duration (RP) 0.84 0.0001*
Temporal DDK measures cTV (DDK) 0.83
Timing alignment CTA (RP) 0.83 0.0020*
Duration and word count for PD Word count (PD) 0.83 < 0.0001*
Eyebrow displacement Max. eyebrow displ. (SIT) 0.78
Pause time PPT (SIT) 0.77 0.0001
Lip width Max. lip width (RP) 0.72 0.0490
Voice quality (read/free speech) HNR (SIT) 0.71 0.0020
Cepstral peak prominence (CPP) CPP (RP) 0.69 0.0290*
Voice quality for SBC and DDK HNR (DDK) 0.68 0.0010
Lip aperture, mouth surface area Mean lip aperture (SIT) 0.68
Eye opening measures Max. eye opening (SIT) 0.68
Content and closed class words Closed class word ratio (PD) 0.67
Min. and mean F0 Mean F0 (RP) 0.67 0.0351
JC velocity for SIT Max. JC velocity down (SIT) 0.66
Duration measures for SBC and DDK Number of syllables (DDK) 0.65
JC velocity for RP Max. JC velocity up (RP) 0.65

Verb/noun/pronoun rates Pronoun rate (PD) 0.62
LL velocity for PD Max. LL jerk up (PD) 0.61
JC velocity for PD Max. JC velocity down (PD) 0.61
JC velocity for SBC Mean JC speed (SBC) 0.60
Max. F0 and F0 stdev. Max. F0 (SIT) 0.60
LL velocity for read speech Mean LL speed (SIT) 0.58
JC velocity for DDK Max. JC velocity down (DDK) 0.58
LL velocity for DDK Mean LL jerk (DDK) 0.57
LL velocity for SBC Max. LL speed (SBC) 0.55
Mouth symmetry ratio Mean mouth symmetry ratio (RP) 0.54
latent growth process (functional decline) is responsible for the change
in observed measures. GCM fitting was performed in R. GCM curves
for distinct cohorts can help identify differences in the longitudinal
trajectory of measures in the two cohorts. In this study, more than 80%
of participants had at least 3 repeated measures, thus minimizing any
impact of variability in the number of sessions per participant on the
growth curve models [71].

4.6.1. Responsiveness
For the responsiveness analysis, the two cohorts chosen for growth

curve modeling were sessions from pALS with bulbar onset and those
from pALS with non-bulbar onset. First, for every selected feature, we
examined whether the rate of change (or slope of the linear fit) is
significantly different between the two cohorts. Then, for those features
that showed differences, responsiveness was evaluated in two ways:
(i) the time taken in weeks to detect deterioration greater than the
standard error of the mean for the cohort (statistical utility) and (ii)
the time taken in weeks to detect deterioration greater than the MCID
value (clinical utility).

4.6.2. Sample size
To investigate the relationship between responsiveness and sample

size of the participant cohort, sample sizes of 30, 25, 20, 15 and 10
participants were randomly sampled 100 times, without replacement,
from both cohorts.12 GCMs were run for each of these 100 iterations.

ean responsiveness for a sample size was calculated by taking the
verage slope for each cohort across the 100 iterations.

12 We did not consider sample sizes of 40 or greater per cohort for this
nalysis to avoid sampling the 36 participants in the bulbar cohort more than
nce.
7

4.6.3. Correlations
To explore the relationship between responsive metrics and the

ALSFRS-R scale, we ran Spearman correlations between metrics that
showed differences in slopes of bulbar and non-bulbar onset pALS and
the ALSFRS-R total score, ALSFRS-R bulbar subscore and the ALSFRS-R
speech question [5].

4.6.4. Sensitivity
For sensitivity analysis, we wanted to ask whether these metrics can

detect bulbar speech deterioration even during those intervals of time
where patients report no speech changes on the ALSFRS-R instrument.
The two cohorts analyzed for this purpose were sessions from healthy
controls and all contiguous pALS sessions with a speech score of 3.
We decided to look at pALS sessions with a speech score of 3 because
these pALS were deemed to exhibit bulbar impairment (albeit per self-
perception) but still had speech that was intact enough for objective
analysis. A feature was determined to be sensitive if the slope of the
GCM for pALS with a steady speech score of 3 varied as compared to the
slope of participants from the control cohort with a steady speech score
of 4. Note that longitudinal data may be confounded by the presence
of learning effects due to the repetition of the same tasks over time.
For example, in the case of the Bamboo passage, familiarity with the
words in the passage may lead to a decreased speaking duration. The
advantage of comparing the trajectory of metrics in ‘clinically-stable’
pALS with that in controls is that it will demonstrate a difference in
slopes over any learning effects (assuming the learning effects are equal
across cohorts).

5. Results

Out of the 17 features selected (after the procedures described in
Section 4.5), 9 features showed differences in slopes between bulbar
onset and non-bulbar onset pALS with the bulbar onset cohort ex-
hibiting a steeper slope (see Fig. 5). Details of the slopes per cohort
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Fig. 5. Growth curve models showing rates of change for bulbar onset pALS (blue) as compared to non-bulbar onset pALS (red). Note: The cohort-specific lines in the growth
curve model figures are not linear regression fits. They represent the average intercept and slope across all participants in the respective cohorts. Each data point represents a
session.
and responsiveness in terms of time to detect change can be found
in Table 4. RP speaking duration was found to be the measure with
the most responsive statistical utility (2.11 weeks in pALS with bulbar
onset). When both statistical and clinical utility are taken into account,
RP CTA was the most responsive measure in both cohorts. RP CTA
showed statistical and clinical utility in detecting changes in bulbar
onset pALS within less than 4 weeks and in non-bulbar onset pALS
within 9 weeks. These results are consistent with what was reported
in [30] where only timing-related metrics of the RP were considered.
PD word count also seemed responsive in detecting changes in bulbar
onset pALS within less than 11 weeks and in non-bulbar onset pALS
within 9 weeks. However, the shorter duration in the non-bulbar onset
cohort is due to an increase in word count over time. This could perhaps
be attributed to participants getting familiar with the PD task over
8

repeated sessions and thus exhibiting a learning effect. However, the
bulbar onset cohort shows a sharp decrease in PD word count over
time despite any learning effect, thus capturing the rapid decline of
articulatory and perhaps respiratory function. RP speaking duration
demonstrated good responsiveness in detecting statistical changes in
both cohorts and clinical change in the bulbar onset cohort. However,
when it comes to detecting clinical change in the non-bulbar onset
cohort, it takes 23.5 weeks. Although all other features also show
differences in the longitudinal trajectory between bulbar onset and
non-bulbar onset pALS, the time taken to observe a clinical change,
especially in non-bulbar onset pALS, may be too long to be of clinical
utility for some interventional trials.

Mean responsiveness of RP speaking duration, PD word count, RP
CTA and RP mean F0 remains stable, with narrow confidence intervals,
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Table 4
Responsiveness of metrics. Bulbar onset: 𝑛 = 36 (598 sessions), Non-Bulbar onset: 𝑛 = 107 (2,790 sessions).

Metric MCID Onset Slope ± standard error Standard error (SE) Weeks to detect Weeks to detect
of slope per week of the mean change > SE change > MCID

RP CTA 0.66 Bulbar −0.2010 ± 0.0408 0.48 2.34 3.28
(%) Non-Bulbar −0.0750 ± 0.0185 0.23 3.07 8.8

PD word count 2.5 Bulbar −0.2447 ± 0.1296 1.56 6.38 10.22
(words) Non-Bulbar 0.2851 ± 0.0573 0.93 3.26 8.77

RP speaking duration 1.45 Bulbar 0.3180 ± 0.0654 0.67 2.11 4.56
(seconds) Non-Bulbar 0.0617 ± 0.0310 0.31 5.02 23.5

RP mean F0 1.82 Bulbar 0.1576 ± 0.0433 1.48 9.39 11.55
(Hz) Non-Bulbar 0.0662 ± 0.0181 0.67 10.12 27.49

DDK HNR 0.44 Bulbar 0.0264 ± 0.0068 0.15 5.68 16.67
(dB) Non-Bulbar 0.0039 ± 0.0031 0.06 15.38 112.82

RP CPP 0.41 Bulbar 0.0137 ± 0.0054 0.13 9.49 29.93
(dB) Non-Bulbar 0.0020 ± 0.0024 0.06 30 205

RP Max. lip width 0.01 Bulbar 0.0003 ± 0.0002 0.0069 23 33.33
Non-Bulbar −0.0001 ± 0.0001 0.0029 29 100

SIT PPT 0.96 Bulbar 0.0400 ± 0.0093 0.23 5.75 24
(%) Non-Bulbar 0.0034 ± 0.0042 0.07 20.59 282.35

SIT HNR 0.59 Bulbar 0.0187 ± 0.0055 0.16 8.56 31.55
(dB) Non-Bulbar 0.0017 ± 0.0025 0.05 29.41 347.06
Fig. 6. Weeks required to detect a change greater than SE and MCID as a function of sample size. For these plots, the vertical limit of the 𝑦-axis was set to 52 weeks. Any metric
that requires more than 52 weeks or 1 year to detect statistically or clinically-important changes may not be useful. The red curve is thus missing in many of the subfigures.
9
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Table 5
Sensitivity of metrics. 47 pALS (793 sessions), 135 controls (3,428 sessions). Controls had a slope significantly different from
0 for metrics with an asterisk (*) next to them. pALS had a slope significantly different from controls for metrics with two
asterisks (**) next to their 𝑝-value of difference.

Metric p-value of
difference

Cohort Intercept ± standard error Slope ± standard error

RP speaking duration* <
0.0001**

Controls 34.55 ± 0.87 −0.0368 ± 0.0101

(seconds) pALS 44.96 ± 1.88 0.1153 ± 0.0220

RP CTA* 0.0017** Controls 79.92 ± 0.85 −0.0384 ± 0.0113
(%) pALS 66.81 ± 1.83 −0.1130 ± 0.0238

PD word count* 0.0071** Controls 100.63 ± 4.47 0.6204 ± 0.0692
(words) pALS 70.94 ± 9.72 0.2355 ± 0.1430

RP CPP 0.0341** Controls 25.64 ± 0.21 −0.0055 ± 0.0029
(dB) pALS 27.37 ± 0.47 0.0073 ± 0.0060

DDK HNR 0.1047 Controls 7.11 ± 0.23 0.0055 ± 0.0033
(dB) pALS 9.62 ± 0.49 0.0171 ± 0.0071

SIT PPT 0.1584 Controls 1.66 ± 0.34 −0.0036 ± 0.0040
(%) pALS 4.71 ± 0.73 0.0083 ± 0.0084

RP mean F0* 0.1885 Controls 147.23 ± 3.09 0.0417 ± 0.0198
(Hz) pALS 156.85 ± 6.33 0.1007 ± 0.0449

SIT HNR 0.2657 Controls 10.01 ± 0.22 −0.0002 ± 0.0025
(dB) pALS 12.10 ± 0.47 0.0059 ± 0.0055

RP Max. lip width 0.9014 Controls 1.65 ± 0.01 −0.0001 ± 0.0001
(Hz) pALS 1.69 ± 0.03 −0.0001 ± 0.0003
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even with sample sizes as low as 15 per cohort (see Fig. 6). However,
we observed that the uncertainty about this estimate generally increases
as the sample size decreases. For all other features, the number of
weeks required to detect a statistical and clinical change in the non-
bulbar cohort is either unstable or too large to be of any clinical utility.
Surprisingly, for some of the metrics, responsiveness was greater at a
sample size of 10 than that of 15. We think this could be a result of
model overfitting and may not be generalizable.

Certain speech metrics (like RP speaking duration, RP CTA and SIT
PPT) showed moderate to strong correlations with the ALSFRS-R speech
question score and the ALSFRS-R bulbar subscore but not the ALSFRS-R
total score (see Fig. 7).

Four features were sensitive enough to show a longitudinal change
before any change in the ALSFRS-R speech score of patients from 3 (see
Table 5) when compared to controls. These features were: RP speaking
duration, PD word count, RP CPP and RP CTA. However, for three
of these four features (RP speaking duration, PD word count and RP
CTA), a learning effect in controls can be observed through the negative
slope for RP speaking duration and RP CTA and a positive slope for
PD word count. Since clinical deterioration of speech in controls is not
expected, any changes in features can be attributed to familiarization
with the task or learning effects. Note that the slope for CTA is negative
in controls because an increase in speaking rate would reduce the CTA
value because the elicitation will be faster than the canonical elicitation
of the reading passage. Differences between controls and pALS were
observed despite the presence of these learning effects.

6. Discussion and conclusions

Summary. We can summarize the modeling results and in turn,
the novel contributions of this manuscript, by means of the following
concise answers to the research questions framed in Section 1:

1. Optimal Feature Selection. Through a comprehensive feature se-
lection process that took multicollinearity into consideration, we
selected 17 representative features that were able to distinguish
bulbar onset pALS from non-bulbar onset pALS with an AUC
≥ 0.65.

2. Responsiveness to Longitudinal Change. 9 of these 17 features
showed a significantly different change over time in pALS with
10

bulbar onset as compared to pALS with non-bulbar onset. m
3. Time to Detect Change. Of these metrics, RP CTA and PD word
count were the most responsive, in that our fitted growth curve
models for these metrics showed the shortest time to detect a
change that was statistically and clinically relevant.

4. Effect of Sample Size. Responsiveness of metrics remains rela-
tively stable even with small sample sizes. However, the uncer-
tainty about this estimate generally increases as the sample size
decreases.

5. Sensitivity Relative to Clinical Standard. Four speech features – RP
CTA, PD word count, RP speaking duration and RP CPP – also
showed a statistically significant change over time even when
the clinical gold standard indicated no clinical change in bulbar-
impaired pALS. For this, we chose pALS who perceived their
speech to be impaired, i.e., a score of 3 on the ALSFRS-R speech
question. Healthy controls showed a learning effect over time for
three of these four features (a slope statistically different from
0) – RP speaking duration, PD word count, RP CTA – perhaps
because they got more familiar with doing the tasks. Under
the assumption that pALS and controls exhibit similar learning
effect rates, progression in pALS was significantly different as
compared to controls , indicating that these metrics are more
sensitive than the clinical gold standard ALSFRS-R at detecting
speech deterioration. Future work will examine the veracity of
this assumption by carefully modeling learning effects across a
larger cohort of ALS patients.

Implications. These results are promising and could have a direct
mpact on the future of remote digital assessment and remote patient
onitoring in both clinical trials and clinical care. The need for objec-

ive and responsive outcome measures for improved and accelerated
linical trials is high. Digital biomarkers that can be collected remotely
and therefore more frequently than standard clinical assessments –

erve as promising outcome measures for tracking disease progression
nd changes over time in an automated, objective, and scalable manner.
ur findings on sample size suggest that speech-based digital biomark-
rs show considerable promise in enabling clinical trial designs with
mall sample sizes. For the most responsive metrics, while the mean
esponsiveness is stable with decreasing sample size, the uncertainty
bout the estimate (standard error) increases marginally as the sample
ize decreases. This has important implications for clinical trial design,
here one desires high confidence in chosen biomarker endpoint esti-

ates on the one hand, and as low a participant sample size as possible
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Fig. 7. Correlation matrix with Spearman’s 𝜌 values indicating the correlation between responsive metrics and ALSFRS-R scores.
on the other. This is because the estimated costs of a clinical trial are
directly proportional to the number of participants and clinic visits
required [72], and therefore the sample size has to be small enough to
fit budgetary constraints. However, an underpowered trial may result
in a statistically inconclusive outcome and the failure of the clinical
trial. Furthermore, in rare neurodegenerative disorders like ALS, ac-
commodating smaller sample sizes is especially important, given the
rapidity of disease progression. Remotely-collected digital biomarkers,
showing responsiveness at sample sizes of around 15 participants, not
only enable smaller sample sizes but also obviate the need for frequent
clinical visits. It is possible, however, that the heterogeneity of disease
manifestation and progression in pALS may not always enable clinical
trials with small sample sizes. Future studies with diverse populations
need to be conducted to confirm the findings of this study. Concerning
the generalizability of the presented findings to other neurological or
mental disorders, it is important to note that the specific set of selected
useful features, including the relative utility of different modalities,
will likely be different in other disorders (cf. related work in Parkin-
son disease [73] or mental health disorders like depression [74] and
schizophrenia [75]), as well as the sensitivity analysis with respect
to a traditional clinical outcome (which is dependent on the disease).
However, the methods that were applied in this study can be readily
transferred to other diseases.

Limitations and future work. It is crucial to interpret the presented
findings in the context of the study’s assumptions and limitations.
Out of the selected set of multimodal metrics, we found that certain
metrics were more useful than others. In particular, facial video metrics
showed diminished utility relative to speech metrics. Despite previously
presented evidence for the utility of these facial metrics in cross-
sectional studies, in ALS and other disorders [26,27,74–77], they were
not as responsive to longitudinal change as speech metrics in the
specific cohorts investigated in this work, suggesting that these metrics
11
are comparatively less robust than speech metrics for characterizing
the strongly heterogeneous nature of ALS disease progression [78].
Some features that were selected during feature selection had an good
AUC for discriminating bulbar onset from non-bulbar onset pALS, but
were not responsive for longitudinal change, e.g., DDK cTV and SIT
maximum eyebrow displacement. While eyebrow placement metrics
are not typically expected to be informative about ALS disease pro-
gression, we hypothesized good clinical utility for the DDK cTV. A
related measure of DDK temporal variability, lip movement jitter, was
previously shown in [79] to be useful in distinguishing slow and
fast progressors of bulbar ALS, and that we did not observe similar
findings for DDK cTV was counterintuitive. On examining the fitted
GCM more closely, we observed a much higher variance about the
cTV slope estimate for the bulbar onset cohort relative to the non-
bulbar cohort, which rendered the differences in slopes statistically
insignificant. One possible explanation for this observation could be
the challenging nature of estimating cTV automatically with sufficient
resolution from audio recordings for the bulbar cohort in particular,
which may lead to inaccurate estimates of the true cTV. To contexualize
how fine a resolution is required, in our dataset, the cTV feature had a
range of approximately 30 to 100 ms, and therefore requires very low
measurement error to capture accurately, which is challenging even
with human annotation.

On a more general note about the selected feature set, we are aware
of the fact that other types of features, such as deep neural network
based representations, can potentially yield improved performance.
However, as interpretability is pivotal in clinical applications, this
work focused on well studied and interpretable speech, linguistic, and
facial kinematic metrics. Alternative black-box data representations like
wav2vec [80,81] and HuBERT [82] were not in the scope of this study,
but should be investigated in future work. Another aspect to consider
for future work is the potential effect of speaker sex on certain speech
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metrics. Frequency related metrics (e.g. F0) and voice quality metrics
(e.g. cepstral peak prominence) are influenced by sex; thus, it might
be beneficial to analyze such metrics separately for female and male
participants.

Methodologically, some necessary assumptions were made to com-
pute the MCID as a measure of clinical utility. How to derive the MCID
for a given outcome measure is still an open challenge and multiple
approaches to estimate clinically-meaningful change have been pro-
posed [33,66]. We used the ALSFRS-R speech score as external anchor
of meaningfulness and applied ROC analysis to derive MCID thresholds
for each feature. It is important to note that the AUC values for these
analyses were in the range of 0.51 to 0.64. Such values are not surpris-
ing and have been seen in prior work looking at dysarthric speech in
ALS [34]. Different approaches and alternatives for an external anchor
will be carefully and systematically examined in future work. Also, in
our investigation of responsiveness and sensitivity, we applied growth
curve models under the assumption of linear trajectories. While this
was done for simplicity and ease of interpretation and is still useful,
we know that ALS disease progression is often nonlinear [78]. Future
work will focus on improving modeling methods to better capture
trajectories and the variability in different clusters of patients that may
share similar disease progression patterns.

Lastly, it is important to take into account the practical consider-
ations and challenges to overcome for widespread adoption of these
multimodal digital biomarker technologies in clinical practice and clin-
ical trials. These include robustness in the face of many different
conditions that affect signals from different modalities differently, ro-
bustness to atypical speech diversity, heterogeneity and comorbidities
involved in progression of disease, recording environments and appli-
cation settings, and generalizability and statistical power of models
as promoted by abundant, good-quality training data [11,38]. Over
and above these, one needs to overcome several practical challenges,
including, but not limited to, privacy (protection, access regulation and
security of patient data), economic issues (reimbursement, insurance
coverage), clinical issues (potential for lowering quality of care, po-
tential for abuse, fragmentation of care), legal issues (licensure laws,
liability concerns) and social issues (differential access to technologies
based on socioeconomic background) [38,83,84]. While some of these
are within our control – for example, ensuring that the Modality plat-
form is HIPAA- and GDPR-compliant, and adheres to strict standards
of patient privacy,13 others will require working as a community to
ddress these gaps in order to accelerate progress towards the next
eneration of precision digital health.
Conclusion. In conclusion, we found that the longitudinal trajecto-

ies of certain digital speech biomarkers are useful in distinguishing
etween persons with bulbar onset ALS and non-bulbar onset ALS.
hese trajectories suggest that clinical change associated with bulbar
ecline could be detected in a matter of a few weeks in pALS. Among
he biomarkers investigated, the timing alignment of read speech as
ompared to a canonical reading of the passage was the most respon-
ive to bulbar decline. This responsiveness holds true even at low
ample sizes. Additionally, some biomarkers are sensitive enough to
etect a change before any clinical change is detected by the prevalent
old-standard survey instrument, the ALSFRS-R scale. The findings of
his study highlight the importance of including multimodal speech
iomarkers from remotely-collected data in clinical trials. Their inclu-
ion can facilitate accessible, speedier and cost-effective randomized
ontrolled trials.

RediT authorship contribution statement

Michael Neumann: Writing – review & editing, Writing – original
raft, Methodology, Conceptualization. Hardik Kothare: Writing –

review & editing, Writing – original draft, Visualization, Methodol-
ogy, Conceptualization. Vikram Ramanarayanan: Writing – review &
editing, Writing – original draft, Methodology, Conceptualization.

13 https://www.modality.ai/regulatory/privacy
12
Declaration of competing interest

All authors are full-time employees of Modality.AI and hold stock
options in the company. Modality did not influence or restrict the
submission of this publication.

Acknowledgments

This work was supported by the National Institutes of Health, USA
grant R42DC019877. We thank our collaborators at EverythingALS
and the Peter Cohen Foundation for participant recruitment and data
collection. We also thank Gabriela M. Stegmann for providing the
template R code to fit growth curve models.

References

[1] L. Xu, T. Liu, L. Liu, X. Yao, L. Chen, D. Fan, S. Zhan, S. Wang, Global variation
in prevalence and incidence of amyotrophic lateral sclerosis: A systematic review
and meta-analysis, J. Neurol. 267 (2020) 944–953.

[2] L.J. Haverkamp, V. Appel, S.H. Appel, Natural history of amyotrophic lateral
sclerosis in a database population validation of a scoring system and a model
for survival prediction, Brain 118 (3) (1995) 707–719.

[3] J.R. Green, Y. Yunusova, M.S. Kuruvilla, J. Wang, G.L. Pattee, L. Synhorst, L.
Zinman, J.D. Berry, Bulbar and speech motor assessment in ALS: Challenges and
future directions, Amyotroph. Lateral Scler. Frontotemporal Degener. 14 (7–8)
(2013) 494–500.

[4] L.C. Wijesekera, P. Nigel Leigh, Amyotrophic lateral sclerosis, Orphanet J. Rare
Dis. 4 (2009) 1–22.

[5] J.M. Cedarbaum, N. Stambler, E. Malta, C. Fuller, D. Hilt, B. Thurmond, A.
Nakanishi, Bdnf Als Study Group, 1A complete listing of the BDNF Study Group,
et al., The ALSFRS-R: a revised ALS functional rating scale that incorporates
assessments of respiratory function, J. Neurol. Sci. 169 (1–2) (1999) 13–21.

[6] K. Rascovsky, S. Xie, A. Boller, X. Han, L. McCluskey, L. Elman, M. Grossman,
Subscales of the ALS functional rating scale (ALSFRS-R) as determinants of
survival in amyotrophic lateral sclerosis (ALS), Neurology 82 (Suppl 10) (2014)
P4. 094.

[7] M. Proudfoot, A. Jones, K. Talbot, A. Al-Chalabi, M.R. Turner, The ALSFRS as
an outcome measure in therapeutic trials and its relationship to symptom onset,
Amyotrop. Lateral Scler. Frontotemporal Degener. 17 (5–6) (2016) 414–425.

[8] K.M. Allison, Y. Yunusova, T.F. Campbell, J. Wang, J.D. Berry, J.R. Green, The
diagnostic utility of patient-report and speech-language pathologists’ ratings for
detecting the early onset of bulbar symptoms due to ALS, Amyotrop. Lateral
Scler. Frontotemporal Degener. 18 (5–6) (2017) 358–366.

[9] R. Dubbioso, M. Spisto, L. Verde, V.V. Iuzzolino, G. Senerchia, G. De Pietro, I.
De Falco, G. Sannino, Precision medicine in ALS: Identification of new acoustic
markers for dysarthria severity assessment, Biomed. Signal Process. Control 89
(2024) 105706.

[10] J.W. van Unnik, M. Meyjes, M.R.J. van Mantgem, L.H. van den Berg, R.P. van
Eijk, Remote monitoring of amyotrophic lateral sclerosis using wearable sensors
detects differences in disease progression and survival: a prospective cohort
study, Ebiomedicine 103 (2024).

[11] V. Ramanarayanan, A.C. Lammert, H.P. Rowe, T.F. Quatieri, J.R. Green, Speech
as a biomarker: Opportunities, interpretability, and challenges, Perspect. ASHA
Special Interest Groups (2022) 1–8.

[12] J. Robin, J.E. Harrison, L.D. Kaufman, F. Rudzicz, W. Simpson, M. Yancheva,
Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations,
Digit. Biomark. 4 (3) (2020) 99–108.

[13] M. Milling, F.B. Pokorny, K.D. Bartl-Pokorny, B.W. Schuller, Is Speech the New
Blood? Recent Progress in AI-Based Disease Detection From Audio in a Nutshell,
Front. Digit. Health 4 (2022).

[14] D.M. Low, K.H. Bentley, S.S. Ghosh, Automated Assessment of Psychiatric Dis-
orders Using Speech: A Systematic Review, Laryngoscope Investig. Otolaryngol.
5 (1) (2020) 96–116.

[15] L.E. Simmatis, J. Robin, T. Pommée, S. McKinlay, R. Sran, N. Taati, J. Truong,
B. Koyani, Y. Yunusova, Validation of automated pipeline for the assessment of
a motor speech disorder in amyotrophic lateral sclerosis (ALS), Digit. Health 9
(2023).

[16] V. Boschi, E. Catricala, M. Consonni, C. Chesi, A. Moro, S.F. Cappa, Connected
Speech in Neurodegenerative Language Disorders: A Review, Front. Psychol. 8
(2017) 269.

[17] H.P. Rowe, S.E. Gutz, M.F. Maffei, J.R. Green, Acoustic-Based Articulatory
Phenotypes of Amyotrophic Lateral Sclerosis and Parkinson’s Disease: Towards
an Interpretable, Hypothesis-Driven Framework of Motor Control, in: Proc.
Interspeech, 2020, pp. 4816–4820.

[18] H.P. Rowe, S. Shellikeri, Y. Yunusova, K.V. Chenausky, J.R. Green, Quan-
tifying Articulatory Impairments in Neurodegenerative Motor Diseases: A
Scoping Review and Meta-Analysis of Interpretable Acoustic Features, Int. J.
Speech-Language Pathol. (2022) 1–14.

https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
https://www.modality.ai/regulatory/privacy
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb1
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb1
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb1
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb1
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb1
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb2
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb2
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb2
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb2
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb2
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb3
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb3
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb3
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb3
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb3
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb3
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb3
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb4
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb4
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb4
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb5
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb5
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb5
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb5
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb5
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb5
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb5
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb6
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb6
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb6
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb6
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb6
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb6
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb6
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb7
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb7
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb7
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb7
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb7
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb8
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb8
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb8
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb8
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb8
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb8
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb8
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb9
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb9
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb9
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb9
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb9
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb9
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb9
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb10
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb10
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb10
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb10
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb10
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb10
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb10
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb11
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb11
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb11
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb11
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb11
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb12
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb12
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb12
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb12
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb12
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb13
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb13
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb13
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb13
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb13
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb14
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb14
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb14
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb14
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb14
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb15
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb15
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb15
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb15
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb15
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb15
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb15
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb16
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb16
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb16
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb16
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb16
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb17
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb17
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb17
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb17
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb17
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb17
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb17
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb18
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb18
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb18
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb18
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb18
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb18
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb18


Computers in Biology and Medicine 180 (2024) 108949M. Neumann et al.
[19] A. Bandini, J.R. Green, J. Wang, T.F. Campbell, L. Zinman, Y. Yunusova,
Kinematic features of jaw and lips distinguish symptomatic from presymptomatic
stages of bulbar decline in amyotrophic lateral sclerosis, J. Speech Lang. Hear.
Res. 61 (5) (2018) 1118–1129.

[20] A. Bandini, J.R. Green, B. Taati, S. Orlandi, L. Zinman, Y. Yunusova, Automatic
Detection of Amyotrophic Lateral Sclerosis (ALS) From Video-Based Analysis of
Facial Movements: Speech and Non-speech Tasks, in: 2018 13th IEEE Interna-
tional Conference on Automatic Face & Gesture Recognition, FG 2018, IEEE,
2018, pp. 150–157.

[21] R. Norel, M. Pietrowicz, C. Agurto, S. Rishoni, G. Cecchi, Detection of Amy-
otrophic Lateral Sclerosis (ALS) via Acoustic Analysis, in: Proc. Interspeech 2018,
2018, pp. 377–381, http://dx.doi.org/10.21437/Interspeech.2018-2389.

[22] C. Barnett, J.R. Green, R. Marzouqah, K.L. Stipancic, J.D. Berry, L. Korngut, A.
Genge, C. Shoesmith, H. Briemberg, A. Abrahao, et al., Reliability and validity
of speech & pause measures during passage reading in ALS, Amyotrop. Lateral
Scler. Frontotemporal Degener. 21 (1–2) (2020) 42–50.

[23] M. Neumann, O. Roesler, J. Liscombe, H. Kothare, D. Suendermann-Oeft, D.
Pautler, I. Navar, A. Anvar, J. Kumm, R. Norel, E. Fraenkel, A.V. Sherman,
J.D. Berry, G.L. Pattee, J. Wang, J.R. Green, V. Ramanarayanan, Investigating
the Utility of Multimodal Conversational Technology and Audiovisual Analytic
Measures for the Assessment and Monitoring of Amyotrophic Lateral Sclerosis
at Scale, in: Proc. Interspeech 2021, 2021, pp. 4783–4787, http://dx.doi.org/10.
21437/Interspeech.2021-1801.

[24] D.L. Guarin, B. Taati, A. Abrahao, L. Zinman, Y. Yunusova, Video-based facial
movement analysis in the assessment of bulbar amyotrophic lateral sclerosis:
clinical validation, J. Speech Lang. Hear. Res. 65 (12) (2022) 4667–4678.

[25] L.E. Simmatis, J. Robin, M.J. Spilka, Y. Yunusova, Detecting bulbar amyotrophic
lateral sclerosis (ALS) using automatic acoustic analysis, BioMed. Eng. OnLine
23 (1) (2024) 15.

[26] Y. Yunusova, J.R. Green, M.J. Lindstrom, L.J. Ball, G.L. Pattee, L. Zinman,
Kinematics of disease progression in bulbar ALS, J. Commun. Disord. 43 (1)
(2010) 6–20.

[27] Y. Yunusova, J.R. Green, M.J. Lindstrom, G.L. Pattee, L. Zinman, Speech in ALS:
Longitudinal Changes in Lips and Jaw Movements and Vowel Acoustics, J. Med.
Speech-Language Pathol. 21 (1) (2013).

[28] G.M. Stegmann, S. Hahn, J. Liss, J. Shefner, S. Rutkove, K. Shelton, C.J. Duncan,
V. Berisha, Early detection and tracking of bulbar changes in ALS via frequent
and remote speech analysis, NPJ Digit. Med. 3 (1) (2020) 132.

[29] M. Eshghi, Y. Yunusova, K.P. Connaghan, B.J. Perry, M.F. Maffei, J.D. Berry,
L. Zinman, S. Kalra, L. Korngut, A. Genge, et al., Rate of speech decline in
individuals with amyotrophic lateral sclerosis, Sci. Rep. 12 (1) (2022) 15713.

[30] H. Kothare, M. Neumann, J. Liscombe, J. Green, V. Ramanarayanan, Respon-
siveness, Sensitivity and Clinical Utility of Timing-Related Speech Biomarkers
for Remote Monitoring of ALS Disease Progression, in: Proc. Interspeech, 2023,
pp. 2323–2327, http://dx.doi.org/10.21437/Interspeech.2023-2002.

[31] J.R. Green, D.R. Beukelman, L.J. Ball, Algorithmic estimation of pauses in ex-
tended speech samples of dysarthric and typical speech, J. Med. Speech-Language
Pathol. 12 (4) (2004) 149.

[32] Y. Yunusova, N.L. Graham, S. Shellikeri, K. Phuong, M. Kulkarni, E. Rochon,
D.F. Tang-Wai, T.W. Chow, S.E. Black, L.H. Zinman, et al., Profiling speech
and pausing in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia
(FTD), PLoS One 11 (1) (2016) e0147573.

[33] A.E. McGlothlin, R.J. Lewis, Minimal clinically important difference: defining
what really matters to patients, JAMA 312 (13) (2014) 1342–1343.

[34] K.L. Stipancic, Y. Yunusova, J.D. Berry, J.R. Green, Minimally detectable change
and minimal clinically important difference of a decline in sentence intelligibility
and speaking rate for individuals with amyotrophic lateral sclerosis, J. Speech
Lang. Hear. Res. 61 (11) (2018) 2757–2771.

[35] H. Kothare, M. Neumann, J. Liscombe, O. Roesler, W. Burke, A. Exner, S. Snyder,
A. Cornish, D. Habberstad, D. Pautler, et al., Statistical and clinical utility of
multimodal dialogue-based speech and facial metrics for Parkinson’s disease
assessment, in: Proc. Interspeech 2022, 2022, pp. 3658–3662.

[36] D. Suendermann-Oeft, A. Robinson, A. Cornish, D. Habberstad, D. Pautler, D.
Schnelle-Walka, F. Haller, J. Liscombe, M. Neumann, M. Merrill, et al., NEMSI:
A Multimodal Dialog System for Screening of Neurological or Mental Conditions,
in: Proceedings of the 19th ACM International Conference on Intelligent Virtual
Agents, 2019, pp. 245–247.

[37] V. Ramanarayanan, D. Pautler, L. Arbatti, A. Hosamath, M. Neumann, H.
Kothare, O. Roesler, J. Liscombe, A. Cornish, D. Habberstad, V. Richter, D. Fox,
D. Suendermann-Oeft, I. Shoulson, When Words Speak Just as Loudly as Actions:
Virtual Agent Based Remote Health Assessment Integrating What Patients Say
with What They Do, in: Proc. Interspeech, 2023, pp. 678–679.

[38] V. Ramanarayanan, Multimodal technologies for remote assessment of
neurological and mental health, J. Speech Lang. Hear. Res. (2024) 1–8.

[39] A.K. Silbergleit, A.F. Johnson, B.H. Jacobson, Acoustic Analysis of Voice in
Individuals With Amyotrophic Lateral Sclerosis and Perceptually Normal Vocal
Quality, J. Voice 11 (2) (1997) 222–231.

[40] B. Tomik, R.J. Guiloff, Dysarthria in Amyotrophic Lateral Sclerosis: A Review,
Amyotrop. Lateral Scler. 11 (1–2) (2010) 4–15.
13
[41] M. Novotny, J. Melechovsky, K. Rozenstoks, T. Tykalova, P. Kryze, M. Kanok,
J. Klempir, J. Rusz, Comparison of Automated Acoustic Methods for Oral
Diadochokinesis Assessment in Amyotrophic Lateral Sclerosis, J. Speech Lang.
Hear. Res. 63 (10) (2020) 3453–3460.

[42] C. Agurto, M. Pietrowicz, E.K. Eyigoz, E. Mosmiller, E. Baxi, J.D. Rothstein,
P. Roy, J. Berry, N.J. Maragakis, O. Ahmad, G.A. Cecchi, R. Norel, Analyzing
Progression of Motor and Speech Impairment in ALS, in: 2019 41st Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2019, pp. 6097–6102, http://dx.doi.org/10.1109/EMBC.2019.8857300.

[43] E.G. Baxi, T. Thompson, J. Li, J.A. Kaye, R.G. Lim, J. Wu, D. Ramamoorthy,
L. Lima, V. Vaibhav, A. Matlock, et al., Answer ALS, a Large-Scale Resource
for Sporadic and Familial ALS Combining Clinical and Multi-omics Data From
Induced Pluripotent Cell Lines, Nat. Neurosci. (2022) 1–12.

[44] C.N. Fournier, R. Bedlack, C. Quinn, J. Russell, D. Beckwith, K.H. Kaminski, W.
Tyor, V. Hertzberg, V. James, M. Polak, et al., Development and Validation of
the Rasch-Built Overall Amyotrophic Lateral Sclerosis Disability Scale (ROADS),
JAMA Neurol. 77 (4) (2020) 480–488.

[45] The pandas development team, Pandas-dev/pandas: Pandas, Zenodo, 2020, http:
//dx.doi.org/10.5281/zenodo.3509134.

[46] W. McKinney, et al., Data Structures for Statistical Computing in Python, in:
Proceedings of the 9th Python in Science Conference, vol. 445, (1) Austin, TX,
2010, pp. 51–56.

[47] S. Van Der Walt, S.C. Colbert, G. Varoquaux, The NumPy Array: A Structure for
Efficient Numerical Computation, Comput. Sci. Eng. 13 (2) (2011) 22–30.

[48] T.E. Oliphant, Python for Scientific Computing, Comput. Sci. Eng. 9 (3) (2007)
10–20.

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
Learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[50] J.D. Hunter, Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9 (3)
(2007) 90–95, http://dx.doi.org/10.1109/MCSE.2007.55.

[51] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python, Nat. Methods 17 (3) (2020)
261–272.

[52] T. Sing, O. Sander, N. Beerenwinkel, T. Lengauer, ROCR: Visualizing classifier
performance in R, Bioinformatics 21 (20) (2005) 7881, URL http://rocr.bioinf.
mpi-sb.mpg.de.

[53] X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, M. Müller,
pROC: An Open-Source Package for R and S+ to Analyze and Compare ROC
Curves, BMC Bioinform. 12 (2011) 77.

[54] H. Wickham, ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New
York, 2016, URL https://ggplot2.tidyverse.org.

[55] J. Pinheiro, D. Bates, R. Core Team, Nlme: Linear and nonlinear mixed ef-
fects models, 2023, URL https://CRAN.R-project.org/package=nlme, R package
version 3.1-164.

[56] P. Boersma, Praat, a system for doing phonetics by computer, Glot Int. 5 (9/10)
(2001) 341–345.

[57] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, M. Sonderegger, Montreal Forced
Aligner: Trainable Text-Speech Alignment Using Kaldi, in: Proc. Interspeech,
2017, pp. 498–502, http://dx.doi.org/10.21437/Interspeech.2017-1386.

[58] K. Yorkston, D. Beukelman, R. Tice, Sentence Intelligibility Test, Tice
Technologies, Lincoln, NE, 1996.

[59] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, M. Sonderegger, Montreal Forced
Aligner: Trainable Text-Speech Alignment Using Kaldi, in: Proc. Interspeech
2017, 2017, pp. 498–502, http://dx.doi.org/10.21437/Interspeech.2017-1386.

[60] J. Liscombe, M. Neumann, H. Kothare, O. Roesler, D. Suendermann-Oeft, V. Ra-
manarayanan, On timing and pronunciation metrics for intelligibility assessment
in pathological ALS speech, in: Vol 27: Suppl. (2022): Abstracts 8th International
Conference on Speech Motor Control Groningen, August 2022, 2022.

[61] Y. Kartynnik, A. Ablavatski, I. Grishchenko, M. Grundmann, Real-time Facial
Surface Geometry from Monocular Video on Mobile GPUs, CoRR (2019) arXiv:
1907.06724.

[62] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, M. Grundmann,
BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs, CoRR (2019)
arXiv:1907.05047.

[63] O. Roesler, H. Kothare, W. Burke, M. Neumann, J. Liscombe, A. Cornish, D.
Habberstad, D. Pautler, D. Suendermann-Oeft, V. Ramanarayanan, Exploring
Facial Metric Normalization For Within- and Between-Subject Comparisons in
a Multimodal Health Monitoring Agent, in: Companion Publication of the 2022
International Conference on Multimodal Interaction, in: ICMI ’22 Companion,
Association for Computing Machinery, New York, NY, USA, 2022, pp. 160–165,
http://dx.doi.org/10.1145/3536220.3558071.

[64] G. Upton, I. Cook, A dictionary of statistics 3e, Oxford University Press, USA,
2014.

[65] H.C. de Vet, C.B. Terwee, R.W. Ostelo, H. Beckerman, D.L. Knol, L.M. Bouter,
Minimal changes in health status questionnaires: distinction between minimally
detectable change and minimally important change, Health Qual. Life Outcomes
4 (2006) 1–5.

http://refhub.elsevier.com/S0010-4825(24)01034-5/sb19
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb19
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb19
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb19
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb19
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb19
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb19
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb20
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb20
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb20
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb20
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb20
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb20
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb20
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb20
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb20
http://dx.doi.org/10.21437/Interspeech.2018-2389
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb22
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb22
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb22
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb22
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb22
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb22
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb22
http://dx.doi.org/10.21437/Interspeech.2021-1801
http://dx.doi.org/10.21437/Interspeech.2021-1801
http://dx.doi.org/10.21437/Interspeech.2021-1801
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb24
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb24
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb24
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb24
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb24
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb25
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb25
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb25
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb25
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb25
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb26
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb26
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb26
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb26
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb26
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb27
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb27
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb27
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb27
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb27
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb28
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb28
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb28
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb28
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb28
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb29
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb29
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb29
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb29
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb29
http://dx.doi.org/10.21437/Interspeech.2023-2002
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb31
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb31
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb31
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb31
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb31
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb32
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb32
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb32
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb32
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb32
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb32
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb32
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb33
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb33
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb33
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb34
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb34
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb34
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb34
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb34
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb34
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb34
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb35
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb35
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb35
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb35
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb35
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb35
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb35
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb36
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb36
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb36
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb36
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb36
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb36
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb36
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb36
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb36
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb37
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb37
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb37
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb37
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb37
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb37
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb37
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb37
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb37
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb38
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb38
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb38
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb39
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb39
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb39
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb39
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb39
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb40
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb40
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb40
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb41
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb41
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb41
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb41
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb41
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb41
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb41
http://dx.doi.org/10.1109/EMBC.2019.8857300
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb43
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb43
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb43
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb43
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb43
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb43
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb43
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb44
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb44
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb44
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb44
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb44
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb44
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb44
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb46
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb46
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb46
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb46
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb46
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb47
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb47
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb47
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb48
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb48
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb48
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb49
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb49
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb49
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb49
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb49
http://dx.doi.org/10.1109/MCSE.2007.55
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb51
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb51
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb51
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb51
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb51
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb51
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb51
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://rocr.bioinf.mpi-sb.mpg.de
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb53
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb53
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb53
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb53
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb53
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb56
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb56
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb56
http://dx.doi.org/10.21437/Interspeech.2017-1386
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb58
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb58
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb58
http://dx.doi.org/10.21437/Interspeech.2017-1386
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb60
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb60
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb60
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb60
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb60
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb60
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb60
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.06724
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://arxiv.org/abs/1907.05047
http://dx.doi.org/10.1145/3536220.3558071
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb64
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb64
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb64
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb65
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb65
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb65
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb65
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb65
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb65
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb65


Computers in Biology and Medicine 180 (2024) 108949M. Neumann et al.
[66] A.G. Copay, B.R. Subach, S.D. Glassman, D.W. Polly Jr., T.C. Schuler, Under-
standing the minimum clinically important difference: a review of concepts and
methods, Spine J. 7 (5) (2007) 541–546.

[67] X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, M. Müller,
PROC: an open-source package for R and S+ to analyze and compare ROC curves,
BMC Bioinform. 12 (2011) 77.

[68] R. Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2021, URL https://www.
R-project.org/.

[69] D. Ienco, R. Meo, Exploration and Reduction of the Feature Space by Hierarchical
Clustering, in: Proceedings of the 2008 Siam International Conference on Data
Mining, SIAM, 2008, pp. 577–587.

[70] D. Von Rosen, The growth curve model: a review, Comm. Statist. Theory Methods
20 (9) (1991) 2791–2822.

[71] P.J. Curran, K. Obeidat, D. Losardo, Twelve frequently asked questions about
growth curve modeling, J. Cogn. Dev. 11 (2) (2010) 121–136.

[72] T.J. Moore, J. Heyward, G. Anderson, G.C. Alexander, Variation in the estimated
costs of pivotal clinical benefit trials supporting the US approval of new
therapeutic agents, 2015–2017: a cross-sectional study, BMJ open 10 (6) (2020)
e038863.

[73] H. Kothare, O. Roesler, W. Burke, M. Neumann, J. Liscombe, A. Exner, S. Snyder,
A. Cornish, D. Habberstad, D. Pautler, et al., Speech, facial and fine motor
features for conversation-based remote assessment and monitoring of Parkinson’s
disease, in: 2022 44th Annual International Conference of the IEEE Engineering
in Medicine & Biology Society, EMBC, IEEE, 2022, pp. 3464–3467.

[74] J. Cohen, V. Richter, M. Neumann, D. Black, A. Haq, J. Wright-Berryman, V.
Ramanarayanan, A multimodal dialog approach to mental state characterization
in clinically depressed, anxious, and suicidal populations, Front. Psychol. 14
(2023).

[75] V. Richter, M. Neumann, H. Kothare, O. Roesler, J. Liscombe, D. Suendermann-
Oeft, S. Prokop, A. Khan, C. Yavorsky, J.-P. Lindenmayer, V. Ramanarayanan,
Towards multimodal dialog-based speech & facial biomarkers of Schizophrenia,
in: Companion Publication of the 2022 International Conference on Multimodal
Interaction, in: ICMI ’22 Companion, Association for Computing Machinery,
New York, NY, USA, 2022, pp. 171–176, http://dx.doi.org/10.1145/3536220.
3558075.
14
[76] H. Kothare, V. Ramanarayanan, O. Roesler, M. Neumann, J. Liscombe, W.
Burke, A. Cornish, D. Habberstad, B. Kopald, A. Bai, et al., Atypical speech
acoustics and jaw kinematics during affect production in children with autism
spectrum disorder assessed by an interactive multimodal conversational platform,
in: Proceedings of the 8th International Conference on Speech Motor Control,
SMC, 2022.

[77] H. Kothare, M. Neumann, J. Liscombe, O. Roesler, D. Habberstad, W. Burke, A.
Cornish, L. Arbatti, A. Hosamath, D. Fox, et al., Assessment of atypical speech
in multiple sclerosis via a multimodal dialogue platform: An exploratory study,
in: Proceedings of the 8th International Conference on Speech Motor Control,
SMC, 2022.

[78] D. Ramamoorthy, K. Severson, S. Ghosh, K. Sachs, J.D. Glass, C. Fournier,
A. Sherman, T.M. Herrington, J. Berry, E. Fraenkel, Identifying patterns in
amyotrophic lateral sclerosis progression from sparse longitudinal data, Nat.
Comput. Sci. 2 (9) (2022) 605–616.

[79] P. Rong, Y. Yunusova, M. Eshghi, H.P. Rowe, J.R. Green, A Speech Measure for
Early Stratification of Fast and Slow Progressors of Bulbar Amyotrophic Lateral
Sclerosis: Lip Movement Jitter, Amyotrop. Lateral Scler. Frontotemporal Degener.
21 (1–2) (2020) 34–41.

[80] S. Schneider, A. Baevski, R. Collobert, M. Auli, Wav2vec: Unsupervised
pre-training for speech recognition, 2019, arXiv preprint arXiv:1904.05862.

[81] A. Baevski, Y. Zhou, A. Mohamed, M. Auli, Wav2vec 2.0: A framework for self-
supervised learning of speech representations, Adv. Neural Inf. Process. Syst. 33
(2020) 12449–12460.

[82] W.-N. Hsu, B. Bolte, Y.-H.H. Tsai, K. Lakhotia, R. Salakhutdinov, A. Mohamed,
Hubert: Self-supervised speech representation learning by masked prediction
of hidden units, IEEE/ACM Trans. Audio Speech Lang. Process. 29 (2021)
3451–3460.

[83] E. Dorsey, E. Topol, State of telehealth, N. Engl. J. Med. 375 (2) (2016) 154–161.
[84] J.N. Acosta, G.J. Falcone, P. Rajpurkar, E.J. Topol, Multimodal biomedical AI,

Nat. Med. 28 (9) (2022) 1773–1784.

http://refhub.elsevier.com/S0010-4825(24)01034-5/sb66
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb66
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb66
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb66
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb66
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb67
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb67
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb67
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb67
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb67
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb69
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb69
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb69
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb69
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb69
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb70
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb70
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb70
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb71
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb71
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb71
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb72
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb72
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb72
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb72
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb72
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb72
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb72
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb73
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb73
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb73
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb73
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb73
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb73
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb73
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb73
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb73
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb74
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb74
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb74
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb74
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb74
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb74
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb74
http://dx.doi.org/10.1145/3536220.3558075
http://dx.doi.org/10.1145/3536220.3558075
http://dx.doi.org/10.1145/3536220.3558075
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb76
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb77
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb77
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb77
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb77
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb77
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb77
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb77
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb77
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb77
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb78
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb78
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb78
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb78
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb78
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb78
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb78
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb79
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb79
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb79
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb79
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb79
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb79
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb79
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://arxiv.org/abs/1904.05862
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb81
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb81
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb81
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb81
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb81
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb82
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb82
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb82
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb82
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb82
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb82
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb82
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb83
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb84
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb84
http://refhub.elsevier.com/S0010-4825(24)01034-5/sb84

	Multimodal speech biomarkers for remote monitoring of ALS disease progression
	ALS & Speech Biomarkers
	Data and Study Design
	Multimodal Dialog System
	Methods
	General Experimental Setup
	Speech and Facial Metrics
	Preprocessing
	Clinically-meaningful change
	Feature Selection
	Longitudinal analysis
	Responsiveness
	Sample Size
	Correlations
	Sensitivity


	Results
	Discussion and Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


