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Abstract
Multiple speech biomarkers have been shown to carry use-

ful information regarding Amyotrophic Lateral Sclerosis (ALS)
pathology. We propose a two-step framework to compute opti-
mal linear combinations (indexes) of these biomarkers that are
more discriminative and noise-robust than the individual mark-
ers, which is important for clinical care and pharmaceutical
trial applications. First, we use a hierarchical clustering based
method to select representative speech metrics from a dataset
comprising 143 people with ALS and 135 age- and sex-matched
healthy controls. Second, we analyze three methods of index
computation that optimize linear discriminability, Youden In-
dex, and sparsity of logistic regression model weights, respec-
tively, and evaluate their performance with 5-fold cross vali-
dation. We find that the proposed indexes are generally more
discriminative of bulbar vs non-bulbar onset in ALS than their
individual component metrics as well as an equally-weighted
baseline.
Index Terms: speech biomarkers, composite index, multi-
modal dialog, remote monitoring, clinical trials, amyotrophic
lateral sclerosis.

1. Introduction
Speech and oro-facial biomarkers have shown great promise for
remote assessment and monitoring of neurological and mental
health [1, 2, 3, 4]. Indeed, many studies have computed and
demonstrated the efficacy of multiple speech metrics that cap-
ture how a given disease impacts multiple domains of speech
performance – be it motor, anatomical, cognitive, linguistic or
affective [1, 5, 6, 7].

A large body of work has further shown the utility of com-
bining biomarkers into an index or optimally weighted com-
bination for clinical practice and pharmaceutical trial applica-
tions [8, 9, 9, 10, 11]. Such composite biomarker indexes can
provide better diagnostics, discriminative ability and noise ro-
bustness than the individual markers alone [12, 13]. However,
there is no work systematically examining and comparing dif-
ferent methods of computing interpretable indexes for speech
based biomarkers, to our knowledge.

In this contribution, we present a comparative analysis of
different methods of index computation for remotely collected
speech biomarkers for Amyotrophic Lateral Sclerosis (ALS).
We propose a novel two-step approach toward computing opti-
mal indexes that can be adapted to other domains and diseases.
Because index computation on a large set of features, such as
those that are typically generated through current state of the
art speech processing pipelines, can be computationally expen-
sive, feature selection is an important first step. For this, we
use a hierarchical clustering based method to group collinear

features together and then select representative features from
each cluster based on receiver operating characteristic (ROC)
analyses for multiple classification tasks. The second step is
the index computation, for which we investigated three different
methods: (a) a stepwise distribution-free approach to maximize
the Youden J statistic, presented recently by Aznar et al. [12];
(b) Su and Liu’s linear discriminant framework [8], which pro-
vides an efficient closed-form expression to maximize the area
under the ROC curve (AUC) under multivariate normality as-
sumption; and (c) a logistic regression model, which estimates
coefficients by minimizing the negative log-likelihood of the
observed class labels given the data.

We focus on linear combinations of features because of
their computational efficiency, and because interpretability is
crucial in the clinical setting. Linear coefficients allow for a
straightforward interpretation of the relative importance of each
feature. To our knowledge, this is the first investigation of index
scores based on multimodal speech features from a large dataset
of video recordings from people with ALS (pALS) and healthy
controls. For evaluation, we focus on the binary classification
bulbar onset vs. non-bulbar onset (only pALS). This task is
useful to assess the indexes’ sensitivity at capturing changes in
the bulbar subsystem (that controls speech), which occur early
on in individuals with bulbar onset.

2. Data
The Modality service, a cloud-based multimodal dialog system
[14] , was used to collect video recordings from participants,
who engaged in a structured conversation with Tina, a virtual
dialog agent. For more details, the reader is referred to [14, 15].

The dialog protocol elicits different types of speech sam-
ples, which are inspired by prior work [16, 17, 18, 19] and also
utilized in similar remote monitoring efforts [20]. In this work,
we focus on (a) read speech (sentence intelligibility test (SIT),
5-15 words; Bamboo reading passage, 99 words), (b) mea-
sure of diadochokinetic (DDK) alternating motion rate (rapidly
repeating the syllables /pAtAkA/), and (c) free speech (a pic-
ture description task). After dialog completion, participants
were asked to fill out the ALS functional rating scale - revised
(ALSFRS-R) [21], the standard clinical scale to capture pro-
gression in ALS.

Data from 143 pALS (70 females, mean age (SD): 60.4
(10.2) years, 36 pALS with bulbar symptom onset) and 135
age- and sex-matched1 healthy controls (71 females, mean age
(SD): 59.9 (10.3) years) were collected between 2020-11-03
and 2023-02-08 in collaboration with EverythingALS and the
Peter Cohen Foundation2. The study protocol was granted ex-

1A tolerance of ±3 years was considered a match in age.
2https://www.everythingals.org/research



empt status by an external Institutional Review Board3. The
total number of sessions in the dataset is 5,945. Because this is
an ongoing project with continuous enrollment of new partic-
ipants, there is a large variation in the number of sessions per
subject and the time between participants’ first and last sessions.

Participant sessions were stratified into three groups based
on [22]: controls (CON; all sessions from healthy controls,
n=3,044), bulbar pre-symptomatic (PRE, n=1,162), and bulbar
symptomatic (BUL, n=1,739). PRE and BUL sessions were
grouped based on the ALSFRS-R bulbar subscore (three ques-
tions on speech, salivation, and swallowing; score ranges from 0
to 12). 62 out of 143 pALS had normal bulbar function (bulbar
subscore = 12) at the beginning of the study; all their sessions
prior to any decline in bulbar subscore were labeled as PRE.
All remaining sessions comprise the BUL group.

3. Methods
3.1. General Experimental Setup

All analysis was performed using Python (v3.7.7) and R
(v3.6.1). The following open-source Python libraries were
used: Pandas (1.3.5 [23, 24]), Numpy (v1.21.5 [25, 26]), scikit-
learn (v1.0.2 [27]), Matplotlib (v3.5.1 [28]), and SciPy (v1.7.3
[29]). The following R packages were used: ROCR (v1.0.7
[30]), pROC (v1.14.0 [31], SLModels (v0.1.2 [32]), and the
rpy2 interface (v2.9.4 4).

We used 5-fold cross validation for the evaluation of the
index scores, using sklearn’s StratifiedGroupKFold. The
class labels for stratification were the three cohorts CON, PRE,
and BUL. Participant IDs were used as groups to ensure non-
overlapping partitions, i.e., for each participant, all sessions are
either in the train or in the test partition.

The feature selection step is difficult in a cross valida-
tion setup because the feature set is likely to be different for
each fold, which hampers comparability and analysis of results.
Therefore, feature selection was done on one randomly picked
train partition.5 Sessions with missing values within the se-
lected feature set were dropped from analysis. Before com-
puting index scores and evaluating performance, the data was
scaled with sklearn’s MinMaxScaler (fitted on the train set
and applied to the corresponding test set).

3.2. Multimodal Features and Feature Selection

The dialog platform is equipped with analytics modules that ex-
tract features from different modalities. Speech and video met-
rics are computed automatically in real-time during a session.
We use Praat [33] and the Montreal Forced Aligner [34] to ex-
tract speech metrics. Facial video metrics are based on facial
landmarks generated with MediaPipe Face Mesh [35]. Linguis-
tic features are computed for the picture description task only,
using the Python package spaCy6; they are based on automatic
transcriptions obtained with AWS transcribe.7 Table 1 shows
the metrics that were considered for this study.

For each of the 5,945 sessions, audiovisual metrics were
extracted for each speech task in the protocol. Considering all
valid task-metric combinations as individual features results in a
very large number of features. To handle multicollinear features

3https://www.advarra.com/
4https://github.com/rpy2/rpy2
5We did feature selection also on a different train partition to confirm

that the set of selected features is not drastically different between folds.
6https://spacy.io/
7https://aws.amazon.com/transcribe/

and identify a good set of representative features, we applied hi-
erarchical clustering on the Spearman rank-order correlations,
similar to the approach in [37]. Ward’s method was used for
clustering and we plotted a dendrogram for visual inspection
of the feature clusters. A distance threshold was chosen manu-
ally to select clusters that represent sensible feature groupings
in terms of the domain (e.g. frequency or timing related speech
features) or the area of the face (e.g. features pertaining to jaw
movement). Selecting the threshold for splitting clusters can
also be done in a data-driven way [37], but we wanted to ensure
that every domain is represented individually.

The final feature set should be versatile with respect to dif-
ferent aspects, like progress monitoring in pALS and early di-
agnosis (classifying between controls and the PRE group). To
select one representative metric per cluster, ROC analyses on
the individual features were conducted for the following binary
classification tasks: CON vs. all pALS, CON vs. BUL, CON
vs. PRE (utility for early diagnosis and patient-control stratifi-
cation), PRE vs. BUL (progress monitoring), and bulbar onset
vs non-bulbar onset (useful for stratification, e.g. in clinical tri-
als). In addition, to assess associations between features and
the ALSFRS-R bulbar subscore, we estimated the total infor-
mation coefficient (TICe) and the maximum information coef-
ficient (MICe), using the MICtools software package [38]. The
TICe/MICe framework provides good power (finding statisti-
cally significant relationships), while being equitable (assigning
similar scores regardless of the relationship type, e.g. linear or
exponential) [39].

For every cluster, the metric that yielded the best result in
the majority of these tests (highest area under curve (AUC) of
the ROC curve and highest MICe) was selected as representa-
tive. For this, metrics were considered independent of the task
first (e.g. identify HNR as best metric for voice quality), and
then the task was selected based on majority vote, but also based
on the principle of a minimal set of tasks, to reduce participants’
burden8. For example, when the average jaw center speed met-
ric extracted from the SIT and DDK tasks both performed sim-
ilarly, DDK was preferred because it was already in the set of
tasks selected for other feature groups. In this manner, the tasks
were reduced to DDK, picture description and the reading pas-
sage. Another desirable property besides predictive power is a
high test-retest reliability of the extracted metrics. This was as-
sessed by computing Pearson correlation between the metrics in
participants’ subsequent sessions, which were recorded at most
7 days apart from each other. The underlying assumption is
that within one week we do not expect changes due to disease
progression, thus, changes are attributed to measurement vari-
ability (and variability in the performance of the tasks). The
right-hand side of table 1 shows the final feature set along with
each feature’s test-retest reliability.

3.3. Index Score Computation

We compared three methods of index computation to optimize
linear discriminability between cohorts. For evaluation, we fo-
cused on the binary classification task to discriminate pALS
with bulbar onset vs. those with non-bulbar onset.

As a baseline composite index, the features were additively
combined with equal weights. However, this simple approach
ignores the fact that some features are on average larger in one

8We made an exception for the lexico-semantic feature cluster. Here,
we chose noun-to-verb ratio over the majority-voted verb rate because
of its ability to capture information about both verb and noun use, which
has been shown to be useful in neurological disorders like ALS [40].



Table 1: Overview of extracted metrics, feature clusters and selected representative features. For visual metrics, functionals (minimum,
maximum, average) are applied to produce one value across all video frames of an utterance. Visual distance metrics are measured in
pixels and are normalized by dividing them by the intercanthal distance (distance between inner corners of the eyes) for each subject.
*the text metric word count for the picture description task was clustered together with timing related audio features. TRR: test-retest
reliability, LL: lower lip, JC: jaw center, RP: reading passage, PD: picture description, DDK: diadochokinesis

Metrics Feature cluster Selected representative TRR

A
ud

io

shimmer (%), harmonics-to-noise ratio (HNR, dB), jitter
(%)

Voice quality HNR (DDK) 0.81

speaking and articulation duration (sec.)*, articulation and
speaking rate (WPM)

Duration & Rate speaking duration (RP) 0.95

mean, max., min., stdev. of fundamental frequency F0 (Hz) F0-related mean F0 (RP) 0.95
percent pause time (PPT, %), canonical timing alignment
(CTA, %) [36], number of syllables (specific for DDK),
word count*

Timing alignment CTA (RP) 0.92

V
id

eo

velocity, acceleration, jerk, and speed of jaw center Jaw movement avg. JC speed (DDK) 0.73
lip aperture/opening, lip width, mouth surface area Mouth measurements max. lip width (RP) 0.80
velocity, acceleration, jerk, and speed of lower lip Lip movement max. LL velocity upwards (RP) 0.61
eye opening, vertical displacement of eyebrows Eyes-related max. vertical eyebrow displace-

ment (RP)
0.77

mean symmetry ratio between left and right half of the
mouth

Mouth symmetry avg. mouth sym. ratio (PD) 0.69

Te
xt

percentage of content words, noun rate, verb rate, pronoun
rate, noun-to-verb ratio, noun-to-pronoun ratio, closed class
word ratio, idea density

Lexico-semantic verb-to-noun ratio (PD) 0.25

class, while some are smaller. To illustrate this with an example:
PPT is on average higher in pALS than in controls (more and
longer pauses), while speaking rate declines and is on average
lower in pALS. To account for this, features were inverted by
taking (1− scaled feature) when their mean was smaller in the
bulbar onset cohort than in the non-bulbar onset cohort. This
was the case for CTA and average mouth symmetry ratio.

3.3.1. Youden Index Optimization

Besides maximizing AUC, another optimization criterion that
is commonly utilized is Youden’s J statistic, or Youden in-
dex [41]. It is defined as J = sensitivity + specificity − 1.
The objective is to find the cut-off point for a diagnostic test or
biomarker that maximizes J . Aznar et al. proposed a stepwise
distribution-free approach to find the optimal linear combina-
tion of continuous biomarkers based on maximizing the Youden
index [12]. We used their R package SLModels to calculate
the feature weights. The advantage of this stepwise approach is
that it is non-parametric and distribution-free.

3.3.2. Fisher’s Linear Discriminant Function

The method proposed by Su and Liu [8] provides a closed form
solution to find the best linear combination that maximizes the
AUC, which is based on Fisher’s linear discriminant analysis
(LDA). Under assumption of Gaussian distributions, the coeffi-
cients are proportional to

(
Sx

m− 1
+

Sy

n− 1
)−1(Ȳ − X̄) (1)

where Sx and Sy are sample covariance matrices of the two co-
horts, m and n the respective number of samples in each group,
and X̄ and Ȳ the sample means. This method assumes normal
distribution of features, which might not always be the case.
However, the calculated index can nevertheless serve as a use-
ful marker, and the method comes with the advantage of low

computational cost.

3.3.3. Logistic Regression

We used sklearn’s LogisticRegression to calculate the model
coefficients that serve as feature weights. We used the liblinear
solver and L1 regularization, and did a grid search cross valida-
tion (within each train partition) over the parameter C to opti-
mize for AUC. L1 regularization was chosen because it enforces
a sparse weight vector, which is beneficial because a minimal
number of features is desired to improve clinical utility [42].

4. Results
Table 2 shows the mean results for the index scores and indi-
vidual features across 5 folds, including the Youden index and
AUC on the train set, and sensitivity, specificity, and UAR on
the test set. To obtain results on the test set, we computed the
optimal cut-off point that maximizes the Youden index on the
train set (using the R package pROC) and applied it as a thresh-
old to classify the test samples.

Speaking duration of the reading passage is the best single
feature, which establishes a strong baseline to beat. The Youden
J based method yields a slightly higher test result than speak-
ing duration and all three index scores yield better results than
the baseline index (in terms of train AUC and test UAR).

In general, we observed high variance between the individ-
ual cross validation folds. For individual features the standard
deviation of UAR across folds ranges between 0.036 and 0.096,
depending on the feature (0.046 for speaking duration (RP)).
For the index scores, the standard deviation was 0.035, 0.037,
and 0.048 for logistic regression, LDA, and Youden J respec-
tively. This suggests that overall the variance is reduced when
applying an index as compared to individual features, which
supports the use of such an optimal composite index as a rela-
tively more noise-robust composite biomarker.

One of the benefits of linear models for index score com-



Table 2: Mean results from 5-fold cross validation for the binary
classification task bulbar onset vs. non-bulbar onset. 1DDK,
2Reading passage, 3Picture description. UAR: unweighted av-
erage recall, Sen.: sensitivity, Spec.: specificity.

TRAIN TEST
J AUC Sen. Spec. UAR

HNR1 0.33 0.69 0.71 0.62 0.67
sp. dur2 0.70 0.86 0.87 0.73 0.80
mean F02 0.25 0.64 0.43 0.66 0.55
CTA2 0.64 0.84 0.14 0.93 0.53
avg. JC speed1 0.14 0.55 0.71 0.39 0.55
max. lip width2 0.30 0.70 0.79 0.48 0.63
max. LL vel. up2 0.14 0.58 0.62 0.45 0.54
max. eyebrow displ.2 0.34 0.70 0.57 0.73 0.65
avg. mouth sym.3 0.06 0.53 0.48 0.43 0.46
verb:noun ratio3 0.16 0.54 0.40 0.74 0.57

Baseline 0.53 0.82 0.69 0.74 0.71
Youden 0.75 0.87 0.88 0.74 0.81
LDA 0.67 0.88 0.83 0.70 0.77
Log. regr. 0.67 0.87 0.88 0.71 0.79

position is their interpretability. It is straightforward to analyze
the weights and identify features that contribute the most infor-
mation to the composite index, an important consideration dur-
ing deployment in clinic or in drug trials. Figure 1 presents the
weights computed with the Youden J based and the LDA based
method. Speaking duration is picked as the most relevant fea-
ture in the Youden J based index and the weights are relatively
stable across test folds compared to the LDA based method.
In contrast, the LDA based method assigns the largest weights
to CTA, and the weights are more unstable across folds. For
logistic regression, L1 regularization was used (enforcing co-
efficient sparsity), setting most feature weights (close) to zero.
Features that had non-zero weights across most test folds were
CTA, max. lip width, and max. eyebrow displacement.

5. Discussion
In this study we presented a two-step method for selecting rel-
evant features and then combining them into a weighted in-
dex score for ALS onset prediction and progress monitoring,
which has the potential to improve the utility for clinical prac-
tice and pharmaceutical trial applications as compared to mul-
tiple individual features. Our findings show that the three in-
vestigated methods for index computation – logistic regres-
sion, LDA based, and Youden index optimization – all yield in-
dexes that perform better than the baseline of equally weighted
features and most of the individual features, while return-
ing lower performance variability overall (and therefore better
noise-robustness) across test partitions. Overall, the Youden
index based composite score yielded the best result (approx-
imately on par with speaking duration as individual feature).
The proposed methods for linear combinations of features are
clinically interpretable because the relative contributions of in-
dividual features to the overall index are known. Furthermore,
the metrics themselves are chosen to be clinically meaningful
and interpretable, as opposed to learnt representations.

We analyzed and compared the feature weights and found
that the Youden index based and the logistic regression coeffi-
cients were more stable across different train/test splits of the
data than the LDA based weights, in terms of the relative con-
tribution of each feature. One peculiar difference between the

Figure 1: Feature weights across 5 validation folds for
Youden J based index (top) and LDA based index (bottom).

methods was the relative importance of the features speaking
duration and CTA. Both features are related (a longer speaking
duration leads to lower timing alignment), which might be the
reason why CTA was basically disregarded in the Youden in-
dex method. In future work, an ablation study, where features
are taken out one at a time, can provide more insights about the
individual contributions.

As mentioned earlier, one advantage of the LDA based
method is the low computational cost. However, it can only pro-
vide the optimal linear combination for maximizing the AUC
when the features are normally distributed. Despite this not be-
ing the case for all features in the dataset we used, we showed
that the resulting index score can yield competitive results.
Future work will examine other probabilistic variants of this
method that do not assume linear separability of classes.

Note that we chose not to provide a single weight vector for
the selected feature set and classification task, but instead re-
ported weights for each cross validation fold. An alternative to
cross validation is to randomly select one train and one test set.
However, this bears the risk of an over-optimistic performance
estimate (which becomes clear when looking at the variation be-
tween results of cross validation folds). Future work will there-
fore focus on applying and extending the proposed framework
to higher sample sizes (in ALS as well as other disease con-
ditions), which will allow one to produce more generalizable,
noise-robust and discriminative indexes, much sought-after as a
potential biomarker in clinical care and pharmaceutical trials.
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