
An Open Source Standards-Compliant Voice Browser with Support for
Multiple Language Understanding Implementations

Dirk Schnelle-Walka
Harman International, Germany
dirk.schnelle-walka@harman.com

Stefan Radomski
Technische Universität Darmstadt, Germany
radomski@tk.informatik.tu-darmstadt.de

Vikram Ramanarayanan, Patrick Lange & David Suendermann-Oeft
Educational Testing Service R&D, San Francisco, USA
<vramanarayanan,plange,suendermann-oeft>@ets.org

Abstract

There are several voice browser imple-
mentations for dialog systems, but none of
them are both open-source and standards-
compliant, while retaining compatibility
with multiple implementations of sys-
tem components such as natural lan-
guage understanding (NLU) and dialog
management modules. We present an
standards-compliant open source solution
that closes this gap while incorporating
support for modern dialog concepts like
flexible switching of user goals, custom
grammar design and adaptivity to users.
We show that our implementation can flex-
ibly interface with two different NLU im-
plementations to extract semantic infor-
mation from user input and expose it to
a VoiceXML application which integrates
into a cloud-based dialog system that han-
dles real user traffic.

1 Introduction

While there are various voice browser imple-
mentations available, they are either standards-
compliant or available as open-source. The for-
mer is crucial for interoperability among different
systems developed by different parties, while the
latter is important for continued community devel-
opment and progress, as well as widespread use of
the technology. Part of the causes of this deficit is
that industrial implementations tend to be propri-
etary for commercial reasons, while academic im-
plementations generally tend to focus on research
examples that involve relatively small volumes of
data. Bridging this gap is crucial to the continued
development of the field and the integration of in-
dustrial and academic voice technology expertise.

The standards-compliant JVoiceXML software

implementation (Schnelle-Walka et al., 2013;
Prylipko et al., 2011) has attempted to bridge this
gap. JVoiceXML is a VoiceXML interpreter writ-
ten entirely in the Java programming language,
supporting the VoiceXML 2.1 standard. The
strength of JVoiceXML is its open architecture.
Besides the support of Java APIs such as JSAPI
and JTAPI, custom speech engines can easily be
integrated. Examples are the text based platform
and the MRCPv2 platform which are available
with the distribution. It can be used within a tele-
phony environment (Prylipko et al., 2011) but also
without any telephony card as a standalone server.

This paper demonstrates an extension of the
basic voice browser functionalities to incorporate
support for modern dialog concepts like flexi-
ble switching between user goals, custom gram-
mar design and adaptivity to users. In addi-
tion, we show that it can interface with differ-
ent NLU implementations to extract semantic in-
formation from user input and make it avail-
able in VoiceXML applications, namely: (i) the
Language Understanding Intelligent Service or
LUIS (Williams et al., 2015) and (ii) the HALEF
dialog system (Ramanarayanan et al., 2017a).

2 Reference Implementation I: LUIS

For the extension of VoiceXML to support state-
of-the art natural language understanding capa-
bilities, we make use of JVoiceXML’s capability
to support custom grammar types (in our case,
application/nlu). The new type is made
available to the interpreter via a dedicated factory
that is loaded when the interpreter starts. This new
type provides a component to parse any utterance
with the help any grammar document or an URI
thereof into a semantic interpretation. This makes
it possible to combine the new capability with any
speech recognizer or textual input.



For automatic speech recognition (ASR) we
employ the text implementation platform to cap-
ture strings as decoded input. Generally, this can
be substituted by any unconstrained ASR. For the
NLU engine we selected LUIS as a reference.
Conceptually, this engine can be replaced by any
other NLU engine to produce comparable output
in terms of application, intent and associated enti-
ties. LUIS is based on active learning to enable
developers utilize machine-learning based mod-
els without the need for large corpora. Its corpus
grows based on real usage data (Williams et al.,
2015).

From the grammar document, we use only its
URI. Once the ASR returns a recognition hypoth-
esis from the user’s spoken input, the hypothe-
sis will be passed to the grammar parser to de-
termine its semantic interpretation. The grammar
parser issues multiple requests to the LUIS server
to check if any of the active grammars is able to
derive meaning from the utterance, i.e. the in-
tent is not None and at least one entity was rec-
ognized. Those with the highest confidence scores
will be taken as the result of the interpretation and
in turn create an ECMAScript object thereof. For
example, the utterance “I would like a large pizza
with pepperoni” (also see Section 3.1.6.1 of the
VoiceXML standard) would be parsed as:

{
nlu-application: "pizza",
nlu-intent: "order-pizza",
order-pizza: {
number: "1",
size: "large",
topping:"pepperoni",

}
}

This allows us to take advantage of VoiceXML
as a scripting language with unconstrained user in-
put for mixed initiative dialogs without the need
for additional changes in the VoiceXML document
and grammar design. The grammar with the new
type can be used at any place where grammars are
involved.

3 Reference Implementation II: The
HALEF Dialog System

The modular and standards-compliant HALEF1

multimodal dialog framework (Ramanarayanan et
al., 2017a) is another example use-case that lever-
ages the JVoiceXML voice browser platform. The

1http://halef.org

HALEF dialog system has collected over 35.000
calls from people all over the world who interacted
with multiple conversational applications (Rama-
narayanan et al., 2017b). Design considerations
in building the open-source HALEF system re-
quire standard compliance (in particular, with the
VoiceXML 2.1 standard), the ability to process
SIP traffic and support for multiple grammar stan-
dards, all of which are provided by the open-
source JVoiceXML platform. In this case, for each
dialog turn, the ASR returns the decoded recogni-
ton hypothesis as a simple ECMAScript variable.
We then perform NLU on this input by querying a
webservice that invokes previously trained statis-
tical models.

4 Conclusions

We have presented an open-source standards-
compliant voice browser implementation and
shown how it can flexibly interface with two dif-
ferent NLU implementations: LUIS and HALEF.
Both approaches enable the reuse of established
knowledge in creating standards compliant appli-
cations with VoiceXML for more modern dialog
concepts as they were available when the stan-
dard was created. No additional changes in the
VoiceXML document are required in the case of
LUIS while HALEF only relies on an additional
web service call.

References
Dmytro Prylipko, Dirk Schnelle-Walka, Spencer Lord, and

Andreas Wendemuth. 2011. Zanzibar OpenIVR: an
Open-Source Framework for Development of Spoken Di-
alog Systems. In Proceedings of Text Speech and Dialog
2011, August.

Vikram Ramanarayanan, David Suendermann-Oeft, Patrick
Lange, Robert Mundkowsky, Alexei V Ivanov, Zhou Yu,
Yao Qian, and Keelan Evanini. 2017a. Assembling the
Jigsaw: How Multiple Open Standards Are Synergisti-
cally Combined in the HALEF Multimodal Dialog Sys-
tem. In Multimodal Interaction with W3C Standards,
pages 295–310. Springer.

Vikram Ramanarayanan, David Suendermann-Oeft, Hillary
Molloy, Eugene Tsuprun, Patrick Lange, and Keelan
Evanini. 2017b. Crowdsourcing Multimodal Dialog
Interactions: Lessons Learned from the HALEF Case.
In American Association of Artificial Intelligence (AAAI
2017) Workshop on Crowdsourcing, Deep Learning and
Artificial Intelligence Agents.

Dirk Schnelle-Walka, Stefan Radomski, and Max
Mühlhäuser. 2013. JVoiceXML as a Modality Compo-
nent in the W3C Multimodal Architecture. Journal on
Multimodal User Interfaces, pages 183–194.

Jason D Williams, Eslam Kamal, Mokhtar Ashour, Hani
Amr, Jessica Miller, and Geoff Zweig. 2015. Fast
and easy language understanding for dialog systems with
Microsoft Language Understanding Intelligent Service
(LUIS). In 16th Annual Meeting of the Special Interest
Group on Discourse and Dialogue. 2015., pages 159–161.


