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Abstract—We consider the potential for incorporating direct,
or inferred, speech production knowledge in speech technology
development. We first review the technologies that can be used
to capture speech articulation information. We discuss how
meaningful (speech and speaker) representations can be derived
from articulatory data thus captured and further how they
can be estimated from the acoustics in the absence of these
direct measurements. We present some applications that have
used speech production information to further the state of
the art in automatic speech and speaker recognition. We also
offer an outlook on how such knowledge and applications can
in turn inform scientific understanding of the human speech
communication process.

I. INTRODUCTION

Any speech or speaker modeling procedure, in order to
be effective, must choose a structure for the model that
reflects the structure of the underlying physical system [1]. For
example, automatic speech recognition (ASR) can benefit from
knowledge of the coordination of the vocal tract articulators
and the resulting acoustics; this can help reduce apparent
token-to-token variability so that general pattern recognition
algorithms have less work to do [2]. In addition, speakers ex-
hibit substantial differences in many aspects of their individual
vocal tract morphology, all of which have the potential to alter
acoustic output or force speakers to adjust their articulation
in compensation. Incorporating such knowledge into speaker
modeling could likewise improve speaker recognition perfor-
mance.

A perennial challenge however has been access to realistic
and useful human speech data. Table I lists current state-of-
the-art articulatory measurement techniques and their relative
advantages and disadvantages. Techniques that have been used
to measure articulation include x-ray microbeam (XRMB)
[4], electropalatography (EPG), electromagnetic articulogra-
phy (EMA) [5] and ultrasound [3]. These techniques, although
some are invasive, are able to capture articulatory information
at high sampling rates. However, none of these modalities
offer a complete a view of all vocal tract articulators at a
sufficiently high spatial resolution, which is important for
studying vocal tract posture. More recently, developments in
real-time MRI have allowed for an examination of shaping
along the entirety of the vocal tract during speech production
and provide a means for quantifying the choreography of the
articulators, including structural/morphological characteristics

of speakers in conjunction with their articulation and acoustics
[7]. However, current rt-MRI protocols have an intrinsically
lower frame rate than the other modalities.

II. REPRESENTATIONS

Enhanced articulatory representations derived from articu-
latory data have the potential to inform work in both phonetic
and phonological theory, as well as speech and speaker mod-
eling. The problem of seeking a set of representations of the
human speech production process can be approached in either
a knowledge-driven or a data-driven manner. An example of
the former from the linguistics (and more specifically, phonol-
ogy) literature is the framework of Articulatory Phonology
[8] which theorizes that the act of speaking is decomposable
into units of vocal tract actions termed “gestures.” Under this
gestural hypothesis, the primitive units out of which lexical
items are assembled are constriction actions of the vocal
organs. So in this framework, a simple set of linguistically-
meaningful primitive representations are so-called ‘constric-
tion task variables’ (or a set of constriction degrees and
locations); this is one possible basis set that can be used to
characterize the gestural lexicon of a language used in speech
planning. One can also derive articulatory representations in a
data-driven manner. One can broadly classify these into two
types – those obtained directly via articulatory measurements
and those that can be estimated from non-articulatory sources
(such as the speech signal).

A. Representations obtained through direct articulatory mea-
surements

One straightforward articulatory feature set that may be
used comprises the raw articulatory measurements themselves.
Take for instance, the raw pellet trajectories obtained using
techniques like XRMB or EMA (Table I). Raw pixel intensities
from rtMRI and their variation over time can also be used as a
feature [9]. Further, coordinative relationships between artic-
ulators can be quantified by calculating pixel correlation [10].
However, we may desire to derive more intuitively meaningful
representations depending on the application. For instance,
these could be outlines or contours that delineate the tongue
and vocal tract structures. In the case of XRMB or EMA,
contours may be obtained by fitting a smooth spline through
all pellet points. However, in the case of MRI and ultrasound,



TABLE I
Articulatory measurement techniques.

Characteristic XRMB EMA Ultrasound EPG rtMRI
Order of typical sampling rate (Hz) 100 500 50 to 300 100 20 to 30
Relative spatial resolution Low Low Medium High High
View of vocal tract Fleshpoints Fleshpoints Tongue Tongue–palate contact Full view
Supine position? No No No No Yes
Invasive? Yes Yes No Yes No
Example database Wisconsin x-ray Edinburgh MOCHA Haskins HOCUS [3] Edinburgh MOCHA USC MRI–TIMIT
(with citation) microbeam database [4] database [5] database [5] database [6]

more involved image processing is required to segment air-
tissue boundaries. For example, we have developed a robust
tool for unsupervised region segmentation of the upper airway,
jaw and supraglottal articulators, which is suited for processing
long sequences of MR images. The segmentation algorithm
uses an anatomically informed object model, and returns a set
of tissue boundaries for each frame of interest, allowing for
quantification of articulator movement and vocal tract aperture
in the midsagittal plane (see Figure 1). Further details of the
region segmentation algorithm may be found in [11]. Once
vocal tract contours are obtained, we can further compute
other meaningful representations – such as area functions,
cross-distances, and other postural variables ([12], [13]). Area
functions are obtained by first imposing a semi-polar grid
on the midsagittal image of the vocal tract and then finding
the intersections between each gridline and the vocal tract
contour outlines found earlier. Finally, the distances between
the intersection coordinates on each gridline are computed,
starting from the lips to the glottis, and use this ordered set
of cross-distances as a feature vector to capture vocal tract
posture. Note that although elegant, this procedure suffers from
one major disadvantage – it is only semi-automatic: one has to
manually choose the initial parameters of the semi-polar grid
to be fitted to the vocal tract (such as the number of gridlines,
spacing between gridlines, gridline orientation angle, to name
a few). This also means that there is minimal guarantee that
one will be able to compare gridlines at the same position
across different subjects. Recently, Ramanarayanan et al. [14]
proposed a method to automatically derive cross-distances
that are computed at points where constrictions are made in
the vocal tract during normal speech production, such as the
alveolar ridge for coronal stop consonants, or the lips for labial
stops. Hence they are conducive to meaningful comparison
across subjects. In addition, other meaningful postural features
such as the angle of the jaw or the centroid of the tongue can
be computed from segmented MRI data.

B. Representations obtained through estimated articulatory
measurements

While speech production data acquisition using EMA or
MRI technology has opened up possibilities for new research,
it is important to note at the same time that the acquisition
of such speech production data can be expensive, intrusive
or impractical. Recording such data could also be prohibitive
and/or uncomfortable to the subjects in many applications.
Such scenarios could be good venue for research on acoustic-

to-articulatory inversion of inferring veritable articulatory in-
formation from representative datasets or associated measure-
ments. In acoustic-to-articulatory inversion (AAI), articulatory
(speech production) representations are estimated from the
acoustic speech signal. Hence AAI can be useful in cases when
it is not possible to directly measure the speech production
data.

There are several approaches available for AAI. Essentially,
these approaches can be classified into four broad classes
- (1) approaches that make use of quantitative models or
mathematical relations between acoustic and articulatory space
representations; (2) analysis-by-synthesis or codebook look-
up approaches [15]; (3) Artificial Neural Network-based ap-
proaches [16]; and (4) statistical approaches ([17], [18], [19],
[20]). A classic example of the first approach is where the
vocal tract shapes are estimated from the speech acoustics
using mathematical relation between the formant frequencies
in vowel sounds and the area function of the vocal tract [21].
Other examples of approaches in this category use Maeda’s
articulatory model [22], or linear-prediction based approach
[23]. In the codebook look-up approach, the articulatory
space is quantized and the corresponding acoustic features are
synthesized to form a codebook of acoustic/articulatory vector
pairs. For example, in [15] the codebook is represented in
the form of a hierarchy of hypercubes and each hypercube
represents a region of the articulatory space in which the
mapping is linear. In the neural network based approach, the
parameters of the networks are trained to get a nonlinear
mapping between articulatory and acoustic parameters. These
approaches are most useful when the articulatory space is rep-
resented by means of abstract linguistics-derived parameters.
Unlike the previous approaches, the final class of methods,
based on stochastic modeling and statistical inference meth-
ods, is appropriate when there is access to parallel corpora
of acoustics and articulation from which mappings can be
learned. There have been several approaches to approximate
this mapping function, for example using a mixture density
network [17] or using dynamical system modeling (Kalman
filtering) [18]. Other methodological improvements have been
proposed to incorporate increasing realism and robustness
to the techniques. For example Ghosh et al. proposed a
generalized smoothness criterion to ensure that the estimated
articulatory trajectories are smooth to the required degree [19].

In general, statistical approaches that have been proposed
have been subject-dependent inversion schemes since they



Fig. 1. Examples of meaningful features that can be computed from rt-MRI data. (a) Contour outlines [11]. (b) Meaningful cross-distances can be computed
that segment the vocal tract into areas A1-A4 [14]. (c) Cross-distances in more detail (lip aperture (LA), velic aperture (VEL), and constrictions of the tongue
tip (TTCD), tongue dorsum (TDCD) and tongue root (TRCD). (d) Articulatory posture variables – jaw angle (JA), tongue centroid (TC) and length (TL), and
upper and lower lip centroids (ULC and LLC).

perform inversion well only on the subject’s data it is trained
with; a basic reason for this is the inherent articulatory-
acoustic variability across talkers in their production details. To
overcome this subject dependence, Ghosh et al. have proposed
a subject-independent inversion scheme [24] where the acous-
tic variability during testing is normalized using a general
acoustic space created from a pool of general talker speech
acoustic data. Hence, when speech data from an arbitrary
talker (not seen in training) need to be inverted, the normaliza-
tion allows for inversion in a “subject-independent” way. Such
a subject-independent scheme can perform inversion on any
subject’s acoustics even though that subject does not belong
to the training data.

Thus various approaches for AAI can be used to derive
speech production representations from the speech signal,
especially in applications where only speech is recorded and
no direct speech articulation data are available.

III. APPLICATIONS

A. Automatic speech recognition (ASR)

There have been several production-oriented approaches to
automatic speech recognition using both direct and estimated
data as well as using recognition models developed based
on speech production knowledge. For example, [25] showed
improvement in speech recognition accuracy by combining
acoustic and articulatory features from a talker. However, it
is not practical to assume the availability of direct articulatory
measurements from a talker in real-world speech recognition
scenarios. To address this challenge, a number of techniques
have been proposed ([26], [27], [28]) where, instead of relying
on features from direct articulatory measurements, abstracted
articulatory knowledge is incorporated in designing models
(e.g., Dynamic Bayesian Networks (DBNs), Hidden Markov
Models (HMMs)) which can be gainfully used for automatic
speech recognition. A summary of such techniques can be
found in [29]. [30], [31] proposed an integrated Bayesian
framework for ASR that consists of a hard-wired lexical
compilation/representation component (which attempts to gen-
eralize ideas of feature overlap proposed by phonological
theories so that the acoustic space can be modeled with
fewer atomic speech units) as well as a stochastic acoustic

mapping component. Multi-steam architectures [32] have been
also proposed as an alternative approach where linguistically
derived articulatory (or more generally, phonetic) features are
estimated from the acoustic speech signal, typically using
Artificial Neural Networks (ANN), and then used to either
replace or augment acoustic observations in an existing HMM
based speech recognition system.

In the context of articulatory data-driven approach for recog-
nition, [33] has used estimated articulatory features obtained
through subject-independent AAI to address the challenge of
unavailability of direct speech production data during speech
recognition. Using subject-independent AAI II-B, articula-
tory features for any talker is estimated using an inversion
scheme trained with parallel acoustic-articulatory data from
an exemplary subject. Using this technique, the authors were
able to show an absolute improvement of around 2% on a
HMM-based phone recognition task using the TIMIT corpus.
To understand the reason for this improvement, note that
the estimated articulatory features could be interpreted as
dynamical features derived from the sequence of short-time
acoustic feature vectors [19]. Dynamical features could pro-
vide information about phonetic classes that is complementary
to that provided by short-time features, and could hence lead to
a boost in recognition accuracy. New advances in measuring
large scale data sets using modalities such as rtMRI, EMA,
etc., offer the opportunity to further develop this exemplar-
based speech recognition paradigm possibly across multiple
languages.

B. Speaker recognition

Understanding the interplay of vocal tract structure, ar-
ticulation and acoustics has technological applications for
automatic speaker recognition. Vocal tract length normaliza-
tion is one example of morphological knowledge that has
already provided performance benefits to automatic speech
and speaker recognition (see for example [34]). Possibilities
exist for providing normalization of the acoustic signal for
other structural differences that impact a variety of phonemes
[35]. An essential component of this normalization, in terms of
making if practically useful, is to accurately predict morpho-
logical characteristics of a speaker from the acoustic signal



(i.e., morphological inversion). Predictions of this kind may
subsequently lead to applications in speaker recognition. These
features will be unique to an individual speaker, making them
ideal for biometric applications.

C. Articulatory modeling

Speech production data can facilitate research in articulation
models describing the full vocal tract shape dynamics. For
example, [9] investigated the application of statistical graphical
models that can capture the spatio-temporal dependencies
between various articulators in a data-driven manner. This
study indicates that if we combine (a) an explicit multistream
transcription with (b) appropriate techniques for extracting
articulatory time-functions along with (c) the appropriate sta-
tistical models, we are well-positioned to derive phonological
information directly from articulatory data. Recently [36] pro-
posed a modeling framework to validate different articulatory
representations using articulatory recognition, which affords
an understanding of the usefulness of a given representation
in analyzing speech articulation.

IV. SCIENTIFIC IMPACT

A. Articulatory primitives and motor control

Consider the case of speech motor control. One popular
theory of motor control is the inverse dynamics model, i.e.,
in order to generate and control complex behaviors, the brain
needs to explicitly solve systems of coupled equations. [37]
and [38] instead argue for a less computationally complex
viewpoint wherein the central nervous system uses a set of
‘primitives’ to “solve” the inverse dynamics problem. Articu-
latory movement primitives may be defined as a dictionary
or template set of articulatory movement patterns in space
and time, weighted combinations of the elements of which
can be used to represent the complete set of coordinated
spatio-temporal movements of vocal tract articulators required
for speech production. We recently proposed an algorithm to
automatically extract such primitives from speech articulation
data [39].

Consider further the case of coarticulation in speech, where
the position of an articulator/element may be affected by
the previous and following target [40]. Using the idea of
motor primitives, we can explore how the choice, ordering
and timing of a given movement element within a well-
rehearsed sequence can be modified through interaction with
its neighboring elements (coarticulation). For instance, through
a handwriting-trajectory learning task, [41] demonstrate that
extensive training on a sequence of planar hand trajectories
passing through several targets results in the coarticulation of
movement components, and in the formation of new movement
primitives.

B. Link between speech production and perception

There have been several well-known hypotheses regard-
ing the relation between production and perception systems
in human speech communication ([42], [43]). Quantitatively
modeling these relationships in order to develop better models

of ASR and speaker recognition is a challenging task and has
not been addressed well by researchers. The availability of rich
speech production data has opened horizons for addressing
these challenging research questions in a data-driven manner.
There are a few advances in this regard. For example, using
mutual information as a metric, Ghosh et al. [44] have shown
in a data-driven manner that the non-uniform auditory filter-
bank in the human ear (receiver) is optimum in providing least
uncertainty in decoding articulatory movements in the human
speech production system (transmitter). This is an exciting
finding since it indicates that the design of the filterbank for
speech recognition systems needs to be optimally designed
with respect to the characteristics of the speech production
system. The same authors also proposed an exemplar-specific
model for speech recognition using speech production knowl-
edge from an exemplar speaker; this is another attempt to
exploit the production-perception relationship. Such a model
has also been shown to be well-suited to investigate the
effect of language mismatch between the talker and exem-
plar in a cross-language ASR application [33]. More such
computational models need to be developed to understand the
effect of speaker dependence, language effect, pathologies and
paralinguistic features in speech and speaker recognition tasks,
particularly to discover robust recognition models.

C. Speaker morphology and its acoustic impact

Examinations of the interplay between vocal tract struc-
ture, articulation and acoustics have already provided insights
into essential issues in speech production research, including
longstanding questions related to inter-speaker variability and
the nature of speech production goals. Structure dictates the
space of vocal tract shapes, the ways which those configura-
tions can be achieved and the resonant and other acoustical
properties of the system. Morphological variation is therefore
a potential source of variability in both the articulatory and
acoustic domains, and has the potential to explain the perva-
sive production variations that are observed across speakers
(see for example [45]). Moreover, the extent to which the
speech controller minimizes production in articulation versus
acoustics within a single speaker can provide evidence in favor
of specific definitions of the goals of speech production [46].

V. OUTLOOK

We have presented some potential applications of speech
production knowledge in speech technology design. Mean-
ingful representations derived from articulatory data have
tremendous potential to further the state-of-the-art in automatic
speech and speaker recognition as well as advancing speech
science. Further, speech signals inherently carry paralinguistic
and extralinguistic information that are interwoven together
with their linguistic content – these could be affective, personal
or transmittal in nature. While human listeners do an excel-
lent job of processing these different sources of information,
speech recognition systems are still lacking in this regard. A
major reason for this performance gap can be attributed to
robustness issues, i.e., the limited ability of current systems to



successfully tease apart different sources of variability in the
speech signal. In this paper we have argued that incorporating
knowledge of speech sound production as well as emotional
affect, prosody, and speaker morphology can inform modeling
of these different sources of variability. This, we believe, will
in turn go a long way in improving the state of the art in
speech technology.
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[46] L. Ménard, J. Schwartz, L. Boë, and J. Aubin, “Articulatory–acoustic
relationships during vocal tract growth for french vowels: Analysis
of real data and simulations with an articulatory model,” Journal of
Phonetics, vol. 35, no. 1, pp. 1–19, 2007.


