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ABSTRACT

We present a technique to jointly learn the high level abstrac-
tions of sequential features (such as, pitch and MFCC’s) and
combine time-aggregated features (such as, mean length of
pauses, recognizer confidence scores, etc.) to optimize the
automated scoring of non-native spoken responses. We use
a bidirectional long short term memory (BLSTM) network, a
type of recurrent neural network to optimize the scoring pro-
cess jointly by learning the high-level abstractions of the time-
sequence features together with traditional time-aggregated
features. We find such model reaches the best performance
in terms of correlation with human raters. We also find in-
corporating time-sequence features improves the performance
drastically when there are limited time-aggregated features.
Thus reducing the effort and resource in generating these fine-
grained features for automated scoring.

Index Terms— Automatic speech scoring, non-native
speech, recurrent neural networks

1. INTRODUCTION AND RELATED WORK

Receptive language skills, i.e., reading and listening, are typ-
ically assessed using a multiple-choice paradigm, while pro-
ductive skills , i.e., writing and speaking, usually are assessed
by eliciting constructed responses from the test taker. Con-
structed responses are written or spoken samples such as es-
says or spoken utterances in response to certain prompt and
stimulus materials in a language test. Due to the complexity
of the constructed responses, scoring has been traditionally
performed by trained human raters, who follow a rubric that
describes the characteristics of responses for each score point.
However, there are a number of disadvantages associated with
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human scoring, including factors of time and cost, schedul-
ing issues for large-scale assessments, rater consistency, rater
bias, central tendency, etc. [1]. To overcome these limitations,
systems for automated scoring of constructed responses have
been developed, both for the written and the spoken domain
of language proficiency assessments [2, 3, 4, 5, 6, 7].

Most automated scoring systems involve two main stages:
(1) computation of manually engineered features describing
certain aspects of the language proficiency that is to be as-
sessed, using natural language processing and related tech-
nologies; and (2) a scoring model which combines these fea-
tures using supervised machine learning with human scores
as criterion variables to generate a score for each constructed
response.

Many state-of-the art automated speech scoring systems
leverage an automatic speech recognition (ASR) front-end
system that provides word hypotheses about what the test
taker said in his/her response. As one might be expected,
training such a system requires a large corpus of non-native
speech as well as manual transcriptions thereof. The out-
puts of this front-end are then used to design further fea-
tures (lexical, prosodic, semantic, etc.) specifically for auto-
matic speech assessment, which are then fed into a machine-
learning-based scoring model. Previous work has typically
optimized these two stages independently. For example,
response-level features specifically suited to the scoring task
are manually engineered, and then fed into simple machine
learning models, such as linear regression [8] or CART trees
[9] to obtain the final score. However, to our knowledge,
no work so far has investigated learning the features and
optimizing the scoring model jointly.

With the advent of high-performance deep neural net-
works in recent years, it has become possible to utilize their
power to automatically abstract from a low-level feature rep-
resentation to generate higher-level features, i.e., without
human expert knowledge being involved, that could provide
additional information to a scoring model that is originally



built solely on expert-engineered features. Automated feature
induction using deep neural network approaches have been
used successfully already in other domains, such as, object
recognition [10], or multimodal analysis [11].

We propose to use Bidirectional Long Short Term Mem-
ory Recurrent Neural Networks (BLSTM) to combine dif-
ferent features for scoring spoken constructed responses.
BLSTMs allow us to to capture information regarding the
spatiotemporal structure of the input spoken response time-
series. In addition, by using a bidirectional optimization
process, both past and future context are integrated into
the model. Finally, by combining higher-level abstractions
obtained from the BLSTM model with time-aggregated
response-level features, we aim to design an automated
scoring system that utilizes both time-sequence and time-
aggregated information from speech to achieve optimal per-
formance.

The rest of the paper is structured as following: we first
introduce our data set and features in Sections 2 and 3 respec-
tively, and then describe the BLSTM model (Section 4) and
the specific network architecture adapted for the automated
spoken response scoring task in Section 5. Finally we report
our results of our experimental analysis in Section 6.

2. DATA

The data used in this study is drawn from an international
assessment for non-native speakers, which measures the abil-
ity to use and understand English at the university level. Its
speaking section consists of two different types of test ques-
tions to elicit spontaneous speech, referred to as independent
and integrated tasks. The independent tasks require test takers
to express their opinions on a familiar topic in the form of a
45-second spoken response, while the integrated tasks require
them to speak a 60-second spoken response based on reading
and listening to relevant prompt materials.

Human experts were recruited to rate the overall profi-
ciency scores on a 4-point scale, which addresses three main
aspects of speaking proficiency, including delivery, language
use, and topic development. For example, based on a general
description of the human scoring rubrics, a score of 4 (highest
level) indicates that the response fulfills the demands of the
task, with at most minor lapses in completeness. It is highly
intelligible and exhibits sustained and coherent discourse; a
score of 1 (lowest level), on the other hand, indicates that the
response is very limited in content and/or coherence, or is
only minimally connected to the task, or the speech is largely
unintelligible. The whole dataset is randomly split into three
partitions: 12,593 responses for training, 2,000 responses for
development, and 1,363 responses for evaluation.

3. FEATURE DESCRIPTIONS

We combine fine-grained, time-aggregated features at the
level of the entire response that capture pronunciation, gram-
mar, etc. (that the SpeechRater system [3] produces) with
time-sequence features that capture frame-by-frame infor-
mation regarding prosody, phone content and speaker voice
quality of the input speech. We use a BLSTM with either
a multilayer perceptron (MLP) or a linear regression (LR)
based output layer to jointly optimize the automated scoring
model.

3.1. Time-Aggregated Feature Descriptions

SpeechRater extracts a range of features related to several as-
pects of the speaking construct.2 These include pronuncia-
tion, fluency, intonation, rhythm, vocabulary use, and gram-
mar. A selection of 91 of these features are used to score
spontaneous speech and all of them are generic as opposed to
being designed specifically for certain test questions. See Ta-
ble 1 for a concise synopsis of these features. We refer to this
set of 91 features as the Content feature set. Within the Con-
tent feature set, there is a subset of features that only consist
of meta information, such as the length of the audio file, the
gender of the test taker, etc. We refer to this set of 7 features
as the Meta feature set.

3.2. Time-Sequence Feature Descriptions

The time-aggregated features computed from the input spo-
ken response take into account delivery, prosody, lexical and
grammatical information. Among these, features such as the
number of silences capture aggregated information over time.
However, previous work has found that some pauses might
be more salient than others for purposes of scoring – for in-
stance, silent pauses that occur at clause boundaries in par-
ticular are highly correlated with language proficiency grad-
ing [16]. In addition, time-aggregated features do not fully
consider the evolution of the response over time. Thus we in-
troduce time-sequence features that contain attempt to capture
the evolution of information over time and use machine learn-
ing methods to discover structure patterns in this information
stream. We extract six prosodic features – “Loudness”, “F0”,
“Voicing”, “Jitter Local”, “Jitter DDP” and “Shimmer Lo-
cal”. “Loudness” captures the loudness of speech, i.e., the
normalised intensity. “F0” is the smoothed fundamental fre-
quency contour.“Voicing” stands for the voicing probability
of the final fundamental frequency candidate, which captures
the breathy level of the speech. “Jitter Local” and “Jitter
DDP” are measures of the frame-to-frame jitter, which is de-
fined as the deviation in pitch period length, and the differ-
ential frame-to-frame jitter, respectively.“Shimmer Local” is

2In psychometric terms, a construct is a set of knowledge, skills, and
abilities that are required in a given domain.



Category Sub-category Quantity Example Features

Prosody
Fluency 19 Features based on the number of words per second, number of words per chunk,

number of silences, average duration of silences, frequency of long pauses
(≥ 0.5 sec.), number of filled pauses (uh and um) [3].

Pitch &
Power

11 Basic descriptive statistics (mean, minimum, maximum, range, standard devi-
ation) for the pitch and power measurements for the utterance.

Rhythm,
Intonation &
Stress

12 Features based on the distribution of prosodic events (promincences and
boundary tones) in an utterance as detected by a statistical classifier (overall
percentages of prosodic events, mean distance between events, mean deviation
of distance between events) [3] as well as features based on the distribution of
vowel, consonant, and syllable durations (overall percentages, standard devia-
tion, and Pairwise Variability Index) [12].

Pronunciation - 11 Acoustic model likelihood scores, generated during forced alignment with a
native speaker acoustic model, the average word-level confidence score of ASR
and the average difference between the vowel durations in the utterance and
vowel-specific means based on a corpus of native speech [13]

Disfluencies – 6 Frequency of between-clause silences and edit disfluencies compared to
within-clause silences and edit disfluencies [14, 15].

Grammar – 12 Similarity scores of the grammar of the response in ASR with respect to refer-
ence response.

Vocabulary Use – 13 Features about how diverse and sophisticated the vocabulary based on the ASR
output.

Item Meta Info – 7 The length of response in seconds, test taker’s gender, test location, native
country and native language. Response type, which is independent or depen-
dent, and the index of the response.

Table 1. Descriptions of time-aggregated features

the frame-to-frame shimmer, which is defined as the ampli-
tude deviation between pitch periods.

Apart from prosodic features, we also extracted a group of
“Mel-Frequency Cepstrum Coefficients” (MFCC’s) from
26 filter-bank channels. MFCC’s capture an overall timbre
parameter which measures both what is said (phones) and the
specifics of the speaker voice quality, which provides more
speech information apart from the prosodic features we men-
tioned above. We computed MFCCs using a frame size of
25ms and a frame shift size of 10ms, based on the configu-
ration files provided in [17]. We use the first 13 of the co-
efficients for out experiments. MFCC features are popularly
used in phoneme classification, speech recognition or higher
level multimodal social signal processing tasks [18].

4. BLSTM MODEL DESCRIPTION

Long Short Term Memory Recurrent Neural Networks (LSTM)
have been proved to be a successful attempt [19] to address
the problem of the vanishing gradients for Recurrent Neural
Networks (RNNs). The LSTM architecture consists of a set
of recurrently connected subnets, known as memory blocks.
Each block contains one or more self-connected memory cells
and three multiplicative units - the input, output and forget
gates - that provide continuous analogues of write, read and

reset operations for the cells. A LSTM network is formed
exactly like a simple RNN, except that the nonlinear units in
the hidden layers are replaced by memory blocks.

The multiplicative gates allow LSTM memory cells to
store and access information over long periods of time,
thereby avoiding the vanishing gradient problem. For ex-
ample, as long as the input gate remains closed (i.e. has an
activation close to 0), the activation of the cell will not be
overwritten by the new inputs arriving in the network, and
can therefore be made available to the net much later in the
sequence, by opening the output gate.

Given an input sequence x = (x1, ..., xT ), a standard re-
current neural network (RNN) computes the hidden vector
sequence h = (h1, ..., hT ) and output vector sequence y =
(y1, ..., yT ) by iterating the following equations from t = 1
to T:

ht = H(Wxhxt +Whhht−1 + bh)

yt =Whyht + by

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is the hidden bias vector) and H is the hidden layer
function. H is usually an element wise application of a sig-
moid function. However we have found that the Long Short-
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Fig. 1. Long Short-term Memory Cell.

Term Memory (LSTM) architecture [19], which uses custom-
built memory cells to store information, is better at finding
and exploiting long range context. Figure 1 shows a single
LSTM memory cell.
For the version of LSTM used in this paper,H is implemented
as following.

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi)

ft = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf )

ct = ftct−1 + it tanh(Wcxxt +Wchht−1 + bc)

ot = σ(Woxxt +Wohht−1 +Wocct + bo)

ht = ot tanh(ct)

where σ is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. Bidirectional
RNNs (BRNNs) [20] do this by processing the data in both
directions with two separate hidden layers, which are then
feed forwards to the same output layer. A BRNN com-
putes the forward hidden sequence

−→
h , the backward hidden
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←−
h and the output sequence y by iterating the back-

ward layer from t = T to 1, the forward layer from t =1 to T
and then updating the output layer:

−→
ht = H(Wx

−→
h
xt +W−→

h
−→
h

−→
h t+1 + b−→

h
)

←−
ht = H(Wx

←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h
)

yt =W−→
h y

−→
h t +W←−

h y

←−
h t + by

Combining BRNNs with LSTM gives bidirectional LSTM
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Fig. 2. A BLSTM with a MLP as the output layer that
jointly optimize the time-sequence([X1, ..., XT ]) and time-
aggregated features (AggFeat [XT , ..., XT+M ]). Features in
the dotted square are concatenated during optimization.

[21], which can access long-range context in both input di-
rections. In automatic grading, where the whole response
are collected at once, there is no reason not to exploit future
context and history context together. In addition, there is no
evidence that either forward or backward is more appropri-
ate in our task, so we model the sequence in both directions.
Recently, BLSTM have been used in a lot of real world se-
quence processing problems such as phoneme classification
[21], continuous speech recognition [22] and speech synthe-
sis [23].

5. NETWORK ARCHITECTURES

We experiment on two neural network architectures in this
paper: the multilayer perceptron (MLP) and the bidirec-
tional long short term memory recurrent neural networks
(BLSTM). A BLSTM is used to learn the high level abstrac-
tion of the time-sequence and MLP/LR is used as the output
layer to combine the hidden state outputs of a BLSTM with
time-aggregated features. We optimize the BLSTM and the
MLP/LR jointly. See Fig 2 for an illustration of the architec-
ture of a LSTM with a MLP as the output layer.

5.1. MLP Network Architecture

We use an MLP with one hidden layer; the input layer of the
MLP consists of time-aggregated features. Then the input
layer is fully connected to the hidden layer, and the hidden
layer is fully connected to an output layer. We used the stan-
dard logistic sigmoid as the activation function in the MLP.

5.2. BLSTM Network Architecture

We experiment on a single-layer BLSTM; the input layer di-
mension of the BLSTM is the dimension of the time-sequence



features. The input layer is fully connected to the hidden
layer, and the hidden layer is fully connected to the output
layer. LSTM blocks use the logistic sigmoid for the input and
output squashing functions of the cell. We modify the tra-
ditional BLSTM by concatenating the time-aggregated fea-
tures to the last hidden state output of the LSTM and revers-
LSTM.[24] We use two types of regressors in the output layer:
MLP AND LR. Due to computing resource limitations and a
relatively small amount of data, we did not experiment with
increasing the number of hidden layers in the BLSTM or the
MLP. This is an avenue for future research.

5.3. Network Parameters

Due to the huge computation load, we downsample the time
sequence features to 1% of the frames we originally sampled.
This is another parameter we intent to investigate in the fu-
ture. We train all networks using stochastic gradient descent
with early stopping criteria on the development set. We exper-
iment with a range of parameters (and report these in Table 2).

6. EXPERIMENTAL OBSERVATIONS AND RESULTS

6.1. Experimental Setting

For all features, we use feature-wise zero-mean, unit-variance
normalization for prepossessing. The final language profi-
ciency score for a given spoken response is an aggregation
of four response-level sub-scores , resulting in a continuous
valued output value. Hence we formulate the scoring prob-
lem as a regression problem.

6.2. Observations

It is not straightforward to compare our results with previ-
ous work on this task, owing to variations in the data used.
Loukina et al.[25] achieved 0.67 in Pearson correlation with
similar data set, but with a different testing set using L1-
norm linear regression. So we implement a linear regression
(LR, [26]) and a multilayer perception (MLP, [27]) with one
hidden layer as baselines for our BLSTM model. We use
least mean squared error as the optimization criteria for the
above two models. In addition, we implement SVM regres-
sion (SVR, [28]) with an RBF kernel based on the scikit-learn
package [29] as a third baseline. Recall that the Content fea-
ture set refers to the 91 time-aggregated features, while the
Meta features refer to the seven features that are a subset of
these aforementioned features (see Table 1). We report both
mean squared error (MSE) and Pearson correlation (corr) of
the predicted scores with human ratings. “SeqFeat” stands
for time-sequence features, while “AggFeat” stands for time-
aggregated features. Also, “P+M” indicates a concatenation
of prosodic and MFCC features.

We find a BLSTM with a LR output layer outperforms a
standalone LR model, and in a similar vein, a BLSTM with

Model SeqFeat AggFeat mse corr

LR None Content 0.319 0.704

LR BLSTM (Prosodic) Content 0.310 0.715

LR BLSTM (MFCC’s) Content 0.309 0.716

LR BLSTM (P+M) Content 0.307 0.718

Table 3. Results of a BLSTM with a LR as the output layer.

Model SeqFeat AggFeat mse corr

MLP None Content 0.305 0.720

SVR None Content 0.304 0.720

MLP BLSTM (Prosodic) Content 0.298 0.726

MLP BLSTM (MFCC’s) Content 0.298 0.726

MLP BLSTM (P+M) Content 0.297 0.727

Table 4. Results of a BLSTM with a MLP as the output layer.

Model SeqFeat AggFeat mse corr

LR None Meta 0.388 0.628

SVR None Meta 0.365 0.655

MLP None Meta 0.368 0.652

MLP BLSTM (P+M) Meta 0.352 0.666
MLP BLSTM (P+M) None 0.459 0.490

Table 5. Results of different models with a reduced time-
aggregated features set.

a MLP output layer outperforms a standalone MLP (see Ta-
ble 3 and Table 4). We also find that increasing the number of
sequential features in the BLSTM model improves the perfor-
mance, and this observation holds for BLSTM models with
either a LR or a MLP as the output layer. We find our best
model is a BLSM with a MLP as the output layer, using both
prosodic and MFCC’s features as the time-sequence feature
set and the Content time-aggregated features set.

The other exciting finding is that when combine the meta
information of the audio files as time-aggregated features and
both prosodic and MFCC’S as the time sequence features, the
model reaches 0.666 in Pearson correlation (see Table 5).
In addition, if we exclude all the time-aggregate features, and
use only time-sequence features, the model still reaches 0.490
in Pearson correlation. This indicates that the time-sequence
features capture rich information about spoken language pro-
ficiency. Such features also have the advantage that they do
not rely on intermediate processing steps such as obtaining
ASR model outputs, which can be resource-intensive.

We find a support vector regression (SVR) model with a
non-linear RBF kernel captures the feature space better than



Model SeqFeat AggFeat LearningRate MLP H dim BLSTM H dim Momentum L2

MLP NA Content 10−4 1000 NA NA 10−3

MLP NA Meta 10−4 500 NA NA 10−3

LR BLSTM (Prosodic) Content 10−3 NA 32 0 10−3

LR BLSTM (MFCC’s) Content 0.01 NA 256 0.9 10−4

LR BLSTM (P+M) Content 10−3 NA 516 0.9 10−4

MLP BLSTM (Prosodic) Content 10−3 1000 32 0 10−3

MLP BLSTM (MFCC’s) Content 10−3 1000 32 0.9 10−4

MLP BLSTM (P+M) Content 10−3 1000 32 0 10−4

MLP BLSTM (P+M) Meta 10−4 1000 128 0.9 10−4

MLP BLSTM (P+M) None 0.01 1000 32 0.9 10−4

Range NA NA [0.01,10−3,10−4] [500,800,1000] [32,64,128,256] [0,0.9] [10−3,10−4]

Table 2. The optimal set of parameters of different network models. “SeqFeat” stands for time-sequence features, “AggFeat”
stands for time-aggregated features. “P+M” stands for prosodic and MFCC’s features concatenated. “MLP H dim” stands
for the number of hidden state dimension in MLP. “BLSTM H dim” stands for the number of hidden state dimension in the
BLSTM. The last row represents the parameter values we experimented with based on empirical observations.

linear mapping methods, such as LR. The performance of one
layer hidden state MLP is similar to SVR with a RBF kernel,
as both of them perform a non-linear mapping of the input
features. However, the results of MLP may further improve
if we increase the number of hidden layers in the model. A
BLSTM with a MLP as the output layer outperforms the SVR
model. This is because a BLSTM model with a MLP output
layer incorporates the time-sequence features in the model in
addition to the time-aggregated features. The time-sequential
features, capture the temporal evolution of information, both
prosodic and spectral, which allows it to attain the best per-
formance among all models evaluated in this paper. Consid-
ering that the Content feature set has been optimized over
many years to achieve optimal performance, the improvement
obtained by adding the time-sequence features in the model
is limited, but still significant nonetheless. The performance
only improves by using the Meta feature set as well.

6.3. Comparison with Human Ratings

We observe that the correlation of our best model’s prediction
with a single human rating is higher than the human inter-
rater correlation between two independent human raters (see
Table 6). While human raters score the responses on a four-
point Likert scale, the computational model’s prediction is a
continuous-valued score. To ensure a fair comparison, we
round off the predicted scores. On doing this, we find that
this improvement over the human inter-rater agreement corre-
lation drops significantly, but is still significant. This could be
due to the bias present in the score values, since many human
raters were involved in the grading of the the whole dataset.

Model-Model mse corr

Human - Human 0.420 0.651

Best Model - Human 0.297 0.727

Rounded Best Model - Human 0.415 0.655

Table 6. Correlation performance of computational models
with human raters

7. CONCLUSIONS AND FUTURE WORK

We have introduced a technique to jointly learn abstractions
from low-level sequential features and optimally combine this
with time-aggregated features for the purpose of automated
scoring of non-native spoken responses. A BLSTM with an
MLP as the output layer reaches the best performance in terms
of correlation with human raters. We also find that without
using fine-grained time-aggregated features which requires
ASR model trained on specific data set, the model is able to
capture the high-level structure of the time-sequence data. In
the future, we will explore how to speed up the model build-
ing process to facilitate automatic scoring in real time, as well
as more sophisticated model architectures such as deep neural
networks with more hidden layers.
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