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Abstract
We present a procedure to automatically derive inter-

pretable dynamic articulatory primitives in a data-driven man-
ner from image sequences acquired through real-time magnetic
resonance imaging (rt-MRI). More specifically, we propose a
convolutive Nonnegative Matrix Factorization algorithm with
sparseness constraints (cNMFsc) to decompose a given set of
image sequences into a set of basis image sequences and an acti-
vation matrix. We use a recently-acquired rt-MRI corpus of read
speech (460 sentences from 4 speakers) as a test dataset for this
procedure. We choose the free parameters of the algorithm em-
pirically by analyzing algorithm performance for different pa-
rameter values. We then validate the extracted basis sequences
using an articulatory recognition task and finally present an in-
terpretation of the extracted basis set of image sequences in a
gesture-based Articulatory Phonology framework.
Index Terms: real-time MRI, gestures, Nonnegative Matrix
Factorization, sparse representations.

1. Introduction
Extracting interpretable representations from raw articulatory
data is critical for better understanding, modeling and synthetic
reproduction of the human speech production process. If we
view the speech planning and execution mechanism in humans
as a control system, we would like to understand the proper-
ties and characteristics of the system such as the goals and con-
straints of the plan and the architecture of the system among
others. For this we would need an understanding of how these
characteristics are specified or represented in inputs and outputs
of the system, i.e., so-called primitive representations. Recently
there have been studies in the literature that have attempted to
further our understanding of primitive representations in biolog-
ical systems using ideas from linear algebra and sparsity theory.
For example, studies have suggested that neurons encode sen-
sory information using only a few active neurons at any point
of time, allowing an efficient way of representing data, forming
associations and storing memories [1]. It has been also been
argued that for human vision the spatial visual receptive fields
in the brain might be employing a sparse and overcomplete ba-
sis for representation [1], and quantitive evidence has been put
forth for sparse representations of sounds in the auditory cor-
tex [2]. However, not many computational studies have been
conducted into uncovering the primitives of speech production.

There are two broad (but not mutually exclusive) ap-
proaches to address this problem of formulating representa-
tions of speech production - knowledge-driven and data-driven.
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There have been many compelling attempts at, and accounts of,
knowledge-driven formulations in the linguistics literature. An
example is the framework of Articulatory Phonology [3] which
theorizes that the act of speaking is decomposable into units of
vocal tract actions termed “gestures.” So in this framework, a
simple set of linguistically-meaningful primitives are so-called
‘tract variables’ (or a set of constriction degrees and locations);
this is one possible basis set that can be used to characterize
the gestural lexicon of a language used in speech planning.
In this paper, however, we choose to adopt the less-explored
data-driven approach to extract sparse primitive representations
from real-time magnetic resonance imaging (rt-MRI) data. We
view this as a first step towards our ultimate goal of bridg-
ing knowledge-driven and data-driven approaches. rt-MRI is
a recently-developed medical imaging technique that has been
successfully used to obtain simultaneous observations of dy-
namic vocal tract shape deformations in the midsagittal plane
along with synchronized audio speech data [4]. It can provide
a complete view of all vocal tract articulators as compared to
other imaging technologies such as ultrasound, electromagnetic
midsagittal articulography (EMMA), etc., thus affording use-
ful data for articulatory modeling and large-scale phonetics re-
search. The rt-MRI data of vocal tract movements hence offer
a rich source of information for deriving articulatory primitives
that underlie speech production.

Modeling data vectors as sparse linear combinations of ba-
sis elements is a general computational approach (termed var-
iously as dictionary learning or sparse coding or sparse matrix
factorization depending on the problem formulation) which we
will use to solve our problem of seeking articulatory represen-
tations. These methods have been successfully applied to a
number of problems in signal processing, machine learning, and
neuroscience, and are in general applicable and useful for our
task since we would like to obtain primitive articulatory rep-
resentations, weighted combinations of which can be used to
synthesize any temporal sequence of articulatory movements.
More specifically, we say that a signal x in Rm admits a sparse
approximation over a basis set of vectors or ’dictionary’ D in
Rm×k with k columns referred to as ’atoms’ when one can
find a linear combination of a small number of atoms from D
that is as “close” to x as possible (as defined by a suitable error
metric) [5]. Note that sparsity constraints can be imposed over
either the dictionary or the coefficients of the linear combina-
tion (or ’activations’) or both. In this paper, since one of our
main goals is to extract interpretable1 basis or dictionary ele-
ments from observed articulatory data, we focus on matrix fac-

1By interpretable we mean a basis that a trained speech researcher
can assign linguistic meaning to; for example, a basis of sequences of
rt-MRI images of the vocal tract.



torization techniques such as Nonnegative Matrix Factorization
(NMF)2 and its variants [10, 11, 7, 8] with sparsity constraints
imposed on the activation matrix (but none on the basis matrix
since not constraining the basis image sequences would allow
them a greater degree of interpretability). In addition, we would
like to find a factorization such that only a few basis functions
are “activated” at any given point of time, i.e., a sparse activa-
tion matrix.

The rest of this paper is organized as follows: we give a
brief description of the data used in Section 2 followed by a de-
tailed layout of the problem formulation in Section 3. We next
present a validation and interpretation of the representations ex-
tracted by our approach in Section 4 followed by a discussion
of future work.

2. Data
For this study we used the MRI-TIMIT database recently col-
lected by our lab which currently consists of read speech data
(MRI image sequences and synchronous noise-cancelled audio)
collected from 4 native (2 male and 2 female) American English
speakers while lying supine in an MRI scanner. The stimuli
consisted of 460 sentences corresponding to those used in the
MOCHA-TIMIT corpus [12]. A more detailed description of
this rt-MRI corpus is provided in a companion submission [13].

3. Problem formulation
Recall that the primary aim of this research is to extract dy-
namic articulatory primitives, weighted combinations of which
can be used to resynthesize the various dynamic articulatory
movements in the vocal tract. Techniques from linear algebra
such as non-negative matrix factorization (NMF) which factor
a given non-negative matrix into a linear combination of (non-
negative) basis vectors are thus an excellent starting point to
solve our problem.

3.1. Nonnegative Matrix Factorization and its extensions

The aim of NMF (as presented in [10]) is to approximate a non-
negative input data matrix V ∈ R≥0,M×N as the product of two
non-negative matrices, a basis matrix W ∈ R≥0,M×K and an
activation matrix H ∈ R≥0,K×N (where K ≤M ) by minimiz-
ing the reconstruction error as measured by either a Euclidean
distance metric or a Kullback-Liebler (KL) divergence metric.
Although NMF provides a useful tool for analyzing data, it suf-
fers from 2 problems of particular relevance in our case. First,
it fails to account for potential dependencies across successive
columns of V (in other words, capture the (temporal) dynamics
of the data); thus a regularly repeating dynamic pattern would
be represented by NMF using multiple bases, instead of a sin-
gle basis function that spans the pattern length. Second, there
is no guarantee that a given column will be represented by as
few bases as possible, which is important to identify primitives.
While one approach to solving this second problem is to im-
pose sparsity conditions on the activation matrix, the first prob-
lem motivated the development of convolutive NMF [7], where
instead we model V as:

2We use NMF-based techniques since these have been shown to
yield basis elements that can be assigned meaningful interpretation de-
pending on the problem domain [6, 7, 8]. It is also worth noting that [9]
gives specific conditions required for NMF algorithms to give a “cor-
rect” decomposition into parts, which affords us some mathematical
insight into the decomposition.

V ≈
T−1X
t=0

W(t) · ~Ht
= V (1)

where each column of W(t) ∈ R≥0,M×K is a time-varying
basis vector sequence, each row of H ∈ R≥0,K×N is its cor-
responding activation vector, T is the temporal length of each

basis (number of image frames) and the ~(·)
i

operator is a shift
operator that moves the columns of its argument by i spots
to the right, as detailed in [7]. In this case the author uses a
KL divergence-based error criterion and derives iterative update
rules for W(t) and H based on this criterion. This formulation
was extended by O’Grady and Pearlmutter [8] to impose spar-
sity conditions on the activation matrix. However the parameter
which trades-off sparsity of the activation matrix against the er-
ror criterion in their case (λ) is not readily interpretable, i.e., it
is not clear what value λ should be set to to yield optimal in-
terpretable bases. We instead choose to use a sparseness metric
based on a relationship between the l1 and l2 norms (as pro-
posed by [11]) as follows:

sparseness(x) =

√
n− (

P
i |xi|)√P

i x2
i√

n− 1
(2)

where n is the dimensionality of x. This function equals unity
iff x contains only a single non-zero component and 0 iff all
components are equal upto signs and smoothly interpolates be-
tween the extremes. More recently Wang et al. [14] showed
that using a Euclidean distance-based error metric was more
advantageous (in terms of computational load and accuracy on
an audio object separation task) than the KL divergence-based
metric and further derived the corresponding multiplicative up-
date rules for the former case. It is this formulation along with
the sparseness constraints on H (as defined by Equation 2) that
we use to solve our problem. Note that incorporation of the
sparseness constraint also means that we can no longer use mul-
tiplicative update rules for H – so we use gradient descent fol-
lowed by a projection step to update H iteratively (as proposed
by [11]). The added advantage of using this technique is that it
has been shown to find a unique solution of the NMF problem
with sparseness constraints [15].

min
W,H
‖V−

T−1X
t=0

W(t) · ~H
t
‖2 s.t. sparseness(hi) = Sh, ∀i. (3)

where hi is the ith row of H and 0 ≤ Sh ≤ 1 is user-defined.

3.2. Extraction of primitive representations from rt-MRI
data

If I1, I2, . . . , IN are theN images (of dimension n1×n2) in an
rt-MRI sequence re-formed into M × 1 column vectors (where
M = n1 × n2), then we can design our data matrix V to be:

V = [I1 |I2 | . . . |IN ] ∈ RM×N (4)

In our case, each image is of dimension 68 pixels by 68 pixels,
i.e., M = 68 · 68 = 4624. We now aim to find an approxima-
tion of this matrix V using a basis tensor W and an activation
matrix H. A complication which arises here is that for a given
speaker in our dataset, there are 92 files (or image sequences),
each of which results in a 4624 × N data matrix V (where N
is equal to the number of frames in that particular sequence).
However we would like to obtain a single basis tensor W for



all files so that we obtain a primitive articulatory representa-
tion for any sequence of articulatory movements made by that
speaker. One possible way to do this is to concatenate all 92
image sequences into one huge matrix, but the dimensionality
of this matrix makes computations intractably slow. In order to
avert this problem we propose a second method that optimizes
W jointly for all files and H individually per file. The algorithm
is as follows:

1. Initialize W to a random tensor of appropriate dimen-
sion.

2. W Optimization.
for Q of N files in the database do

(a) Initialize H to a random matrix of requisite dimen-
sions.

(b) PROJECT. Project each row of H to be non-
negative, have unit l2 norm and l1 norm set to
achieve the desired sparseness [11].

(c) ITERATE.

i. H Update.
for t = 1 to T do

· Set Ĥ(t) = H - µH W(t)(
←−
V

t

-
←−
V

t

).
· PROJECT H.

H← 1
T

P
Ĥ(t).

ii. W Update.
for t = 1 to T do

· Set W(t) = W(t)⊗V(
−→
H

t

)T �V(
−→
H

t

)T .

3. for the rest of the files in the database do

· H Update keeping W constant.

Step 2 is repeated for an empirically-specified number of itera-
tions. The stepsize parameter µH of the gradient descent proce-
dure described in Step 2 is also set manually based on empirical
observations. Note that the total number of rt-MRI image se-
quences in the database was N = 92 and W was optimized
over Q = 10 files.

3.3. Selection of optimization parameters

In this section we briefly describe how we set the values of the
various free parameters of the algorithm. The temporal extent of
each basis sequence (T ) was set to either 4 or 5 (since this cor-
responds to a reconstructed image sequence time period of ap-
proximately 170ms and 216ms respectively) to capture effects
of the order of a syllable length on average. Since we want the
activations of these basis vectors to be as sparse as possible (and
as few basis vectors active at any given point of time) we choose
the sparseness parameter (Sh) to be in the range 0.7−0.9. This
parameter as well as the optimal number of bases (K) was cho-
sen by looking at the performance of the algorithm for different
values of Sh and K (an example graph is plotted in Figure 1).
Note that the figure shows the performance of the algorithm for
T = 1. Since increasing the value of T just causes an increase
in the number of NMF operations by a factor of T , we can use
this to get a general idea of how the algorithm performs3 with

3Given the large dimensionality of the videos in our problem, the
algorithm takes a long time to run for a given set of parameters; hence
we used a temporal dimension of T = 1 to optimize Sh and K.

different values of Sh and K. One general trend which is seen
is that the squared error (or value of the objective function) af-
ter 50 iterations decreases as K increases – this makes intuitive
sense since we expect to get a better approximation of V as
K approaches the rank of V . In addition, the objective func-
tion is lower for lower values of the sparseness parameter Sh.
Based on such observations and the fact that we would like the
dimension of the extracted basis to be as small (for better inter-
pretability), we choose Sh = 0.75 and K = 15.

Figure 1: Performance of the algorithm as measured by the objective
function value (as defined by equation 3) on a dataset file for T = 1
different values of sparseness Sh and number of bases K.

4. Linguistic interpretation and validation
Figure 2 depicts 4 out of 15 basis sequences extracted using the
cNMFsc algorithm and how they can be combined (after weigh-
ing by corresponding activation functions) to approximate a
given sequence (example shows the word “cut”). Notice that ba-
sis sequence A, B and C correspond to the formation of a dorsal
constriction, release of a dorsal constriction and a coronal con-
striction respectively. Also notice that each of these sequences
are activated one after the other in sequence as is required to
produce the sequence “cut”. These basis sequences A-C are
interpretable and yield a good approximation of the input se-
quence. In addition the sequence D depicts a vocal tract posture
or ‘setting’ at rest – basis sequences like these are important for
linguistic studies of articulatory setting or basis of articulation
to understand how articulatory postures are controlled by the
speech planning mechanism [16]. This sequence of “average”
vocal tract postures is typically combined with the other basis
sequences (A-C) in a weighted manner to approximate a given
sequence of interest. The illustration in Figure 2 also shows that
this method doesn’t always give clear-cut results, for instance,
there is no image in any of the basis sequences that clearly de-
picts a complete dorsal closure; the basis sequences extracted
by the algorithm depend on choice of parameters and the con-
tent of the input sequences that W is optimized on. In addition,
we have not yet explored as to what extent the activation func-
tions corresponding to the extracted bases are able to differen-
tiate stops versus fricatives, where there is a fine distinction in
the constriction degree.

Validating the performance of such algorithms is in general
a difficult task. One way is estimating how well the features
are able to distinguish between broad linguistic classes such as
manners and places of articulation. One method to compare
our algorithm against and which may be expected to do well on
this task is principal component analysis (PCA), which extracts
K basis vectors that account for as much variance in the ob-
served data as possible, but is not readily interpretable. So one
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Figure 2: Example decomposition of the word ”cut” spoken by a female subject (top row shows 8 frames corresponding to ”cut”). Rows A-D show
activations (rightmost panel) of 4 component bases (out of a total of K = 15) at times corresponding to the first 6 frames (out of the 8) shown in the
top panel (Sh = 0.75 and T = 4). Activations of other bases were zero for the time frame displayed. See text for details.

test for our algorithm is whether it is able to bridge this gap –
discriminate between broad linguistic classes atleast as well as
PCA while giving us interpretable bases simultaneously. Pre-
liminary HMM-based articulatory recognition results indicate
that the (activation) features extracted using the cNMFsc algo-
rithm (Sh = 0.75,K = 15, T = 4) correctly distinguished
between broad linguistic classes 30.33% of the time for one
speaker while activation (features) extracted using PCA per-
formed slightly better at 40.34%. Thus there is scope for im-
provement. It must be however noted that the recognition setup
has not yet been optimized to deal with sparse feature vectors
(such as the activation features in our case); in addition, we
have not preprocessed/denoised the data, and some of the extra
variation captured by PCA might be due to noise in the image
sequences.

5. Conclusions and future work
We have presented an algorithm to extract basis image se-
quences of articulatory movements from real-time MRI data.
As one can see in Figure 2, the extracted basis is somewhat
interpretable to the trained linguist; for example, one can see
the formation of a tongue-tip and tongue dorsum closures cap-
tured by 2 of the basis functions. Note that some of the vocal
tract shapes not represented well include extreme shapes, such
as that assumed during an /a:/ vowel. In addition, noting that
different articulatory actions might extend over different tem-
poral durations, designing the T parameter to be variable for
different bases might yield better results.

In future work, we hope to develop a more concrete val-
idation and articulatory recognition framework for our algo-
rithm. We would like to develop and extend the proposed al-
gorithm/method to find a link between knowledge-driven repre-
sentations of articulatory movement and data-driven represen-
tations (such as the proposed method) to obtain interpretable
bases of articulatory actions that are provably commensurate
with linguistic theories. In addition, we would like to explore
other approaches, probabilistic and otherwise, from the sparse
coding literature to improve the performance of the algorithm.
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