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Abstract

We present a technique for automated assessment of public
speaking and presentation proficiency based on the analysis of
concurrently recorded speech and motion capture data. With
respect to Kinect motion capture data, we examine both time-
aggregated as well as time-series based features. While the
former is based on statistical functionals of body-part position
and/or velocity computed over the entire series, the latter fea-
ture set, dubbed histograms of cooccurrences, captures how of-
ten different broad postural configurations co-occur within dif-
ferent time lags of each other over the evolution of the mul-
timodal time series. We examine the relative utility of these
features, along with curated features derived from the speech
stream, in predicting human-rated scores of different aspects of
public speaking and presentation proficiency. We further show
that these features outperform the human inter-rater agreement
baseline for a subset of the analyzed aspects.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics, multimodal computing

1. Introduction
In recent years there has been an increasing demand for assess-
ments of interpersonal interaction and communication skills in
general for purposes of business, teacher licensure, etc. Such
assessments include problems of automated interviewing, inter-
view assessment, and automated presentation scoring, among
others, and although in this paper we choose to focus on the lat-
ter problem, the methods we describe can in general be applied
to other applications as well.

Multimodal data capture techniques based on motion cap-
ture, video and audio feeds provide a rich source of informa-
tion for such assessment, but the complexity of this data stream
brings with it a need for signal analysis tools to automatically
process and make sense of this data. Researchers have made
many advances towards understanding and modeling these mul-
timodal data streams. For example, Naim et al. [1] analyzed job
interview videos of internship-seeking students and found, us-
ing machine learning techniques, that prosody, language and fa-
cial expression features were good predictors of human ratings
of desirable interview traits such as excitement, friendliness or
engagement. Nguyen et al. [2] used non-verbal behavioral cues
extracted from a dataset of 62 interview videos as key compo-
nents of a computational framework to predict the hiring deci-
sion on those videos. Indeed, while there is much work on au-
tomatic recognition of one or more social cues and verbal and
nonverbal behavioral traits in the speech and larger multimodal

analysis communities (see for example [3, 4, 5, 6]), this prob-
lem has been also been highlighted as a particularly important
one, evidenced by a number of challenges at international con-
ferences on related topics [7, 8]. Recently Chen et al. [9] also
presented a framework for collecting multimodal data of peo-
ple giving presentations for purposes of automated assessment.
They further presented preliminary results suggesting that basic
features in the speech content, speech delivery, and hand, body,
and head movements significantly predicted holistic human rat-
ings of public speaking skills. In this work, we build upon and
extend this work to predict not only a holistic score of presenta-
tion proficiency, but other aspects as well, using a combination
of features derived from speech and Kinect data.

Despite the research advances made so far in multimodal
signal analysis and presentation scoring, there is little work that
explicitly models the temporal evolution of these signals and ex-
ploits this information for presentation scoring and understand-
ing. It is this gap that we attempt to bridge in this study. Specif-
ically, we propose a feature based on histograms of cooccur-
rences [10, 11, 12] that models how different “template” body
postures co-occur within different time lags of each other in a
particular time series. Such a feature explicitly takes into ac-
count the temporal evolution of body posture in different pre-
sentation contexts. We aim to explore how much of a benefit
such time-series-based modeling can provide in assessment of
presentation and interview performance.

The rest of the paper is organized as follows: Section 2
goes into the details of the multimodal data corpus, including
the tasks, data collection and processing, and human scoring of
different aspects of presentation proficiency. We then describe
the different Kinect and speech-based features in Section 3, fol-
lowed by the results of the regression experiments for presenta-
tion score prediction using these features in Section 4.

2. Data
2.1. Assessment Tasks and Multimodal Data Collection

Five public speaking tasks were utilized for data collection.
Among these tasks, the first one, task A, was an ”ice-breaker”,
in which the speaker introduced him or herself; this task is
not analyzed due to the personally identifiable information in-
volved. Tasks B and C were modeled after prepared informa-
tional speeches, in which the speaker was given a pre-prepared
slide deck and up to 10 minutes to prepare for the presentation.
Task B was a business presentation, where the speaker was to
present a financial report. Task C is a simulated teaching task
on a topic targeting middle school students. The other two tasks



Table 1: Performance standards adapted from the Public Speaking Competence Rubric (PSCR) [13] that human raters were asked to
score each multimodal presentation on.

Score Shorthand Description of Item Competency
Dimension

1 Intro Formulate an introduction that orients the audience to the topic and speaker
2 Org Use an effective organizational pattern
3 Conc Develop a conclusion that reinforces the thesis and provides psychological closure
4 WC Demonstrate a careful choice of words
5 VE Effectively use vocal expression and paralanguage to engage the audience
6 NVB Demonstrate nonverbal behavior that reinforces the message
7 AudAdap Successfully adapt the presentation to the audience
8 VisAid Skillfully make use of visual aids
9 Persuasion Construct an effectual persuasive message with credible evidence

10 Holistic Overall holistic performance

were persuasive and impromptu speeches. Task D asked speak-
ers to consider a movie they did not like but nonetheless rec-
ommend it to others. Task E asked speakers to consider a place
inconvenient to live in and discuss the benefits of living there.
Note that there has no visual aid for for Tasks D and E.

We collected multimodal data using the following equip-
ment and software tools: (a) Microsoft Kinect (Windows Ver-
sion 1) for recording 3D body motions, (b) Brekel Pro Body
Kinect tracking software (v1.30 64 bit version) for recording
58 body joints’ motion traces in the Biovision hierarchical data
format (BVH), and (c) a JVC Everio GZ-HM35BUSD digital
camcorder for audio/video recording. Note that we do not use
the video data for this study. Both Kinect and camcorder were
placed 1.83m away from the front of the speaking zone that
was marked on the ground. Additionally, during Task B and C,
a SMART Board projector system was used to show the Power-
Point slides.

17 volunteers were recruited from within Educational Test-
ing Service (ETS), with ten male participants and seven female
participants. Seven of the participants were experienced public
speakers from the Toastmasters Club. The rest varied widely
in their experience in public speaking. Data from 3 speakers
were lost due to equipment failure. In total, we obtained 56
presentations from 14 speakers (4 per speaker) with complete
multimodal recordings.

2.2. Human Rating

Since the ultimate goal of this study will be developing a valid
assessment for measuring public speaking skills via presenters’
multimodal behaviors, we chose the Public Speaking Compe-
tence Rubric (PSCR) [13] as an assessment rubric due to its
favorable psychometric properties. Using the PCSR tailored to
our tasks, human raters scored these presentation videos along
10 dimensions that represent various aspects of presentation
proficiency on a five-point Likert scale from 0 to 4 [13]. See
Table 1 for the complete list of scoring dimensions.

Five raters were recruited from within an educational test-
ing company. Two expert raters had background in oral com-
munication/public speaking instruction at the higher education
level. The other three (non-expert raters) had extensive ex-
perience in scoring essays, but not in scoring public speaking
performances. For reliability purposes, the presentations were
double-scored. In the event that the scores between two raters
were discrepant, the following adjudication process was used
to generate final scores. If the first two raters agreed with each
other, the score was used as the final score. Otherwise, a third
rater (expert) was brought in to make another judgment, and the
final score assigned was the average of all three scores.

3. Method
3.1. Computing time-aggregated Kinect features

For time-aggregated Kinect features, we computed statistical
functionals of certain body point markers that correlated the
best with the human-rated holistic scores and that captured the
degree of locomotion and hand movement. We extracted a
feature set consisting of the following statistical functionals –
means and standard deviations of the left and right hip mark-
ers, left and right hand markers as well as their log-transformed
values.

3.2. Computing histograms of co-occurrences (HoC) fea-
tures from Kinect time-series data
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Figure 1: Schematic depiction of the computation of histograms
of cooccurrences (HoC) (adapted from [12]). For a chosen lag
value, τ , and a time step t, if we find labelsm and n occurring τ
time steps apart (marked in gold), we mark the entry of the lag-
τ cooccurrence matrix corresponding to row (m,n) and the tth

column with a 1 (corresponding entry also marked in gold). We
sum across the columns of this matrix (across time) to obtain
the lag-τ HoC representation.

The idea behind the histogram of cooccurrence (HoC) fea-



Table 2: Speaking Proficiency Features Extracted by SpeechRater
Category Sub-category # of Fea-

tures
Example Features

Prosody
Fluency 24 This category includes features based on the number of words per sec-

ond, number of words per chunk, number of silences, average duration
of silences, frequency of long pauses (≥ 0.5 sec.), number of filled
pauses (uh and um). See [14] for detailed descriptions of these features.

Intonation & Stress 11 This category includes basic descriptive statistics (mean, minimum,
maximum, range, standard deviation) for the pitch and power measure-
ments for the utterance.

Rhythm 26 This category includes features based on the distribution of prosodic
events (promincences and boundary tones) in an utterance as detected
by a statistical classifier (overall percentages of prosodic events, mean
distance between events, mean deviation of distance between events)
[14] as well as features based on the distribution of vowel, conso-
nant, and syllable durations (overall percentages, standard deviation,
and Pairwise Variability Index) [15].

Pronunciation Likihood-based 8 This category includes features based on the acoustic model likelihood
scores generated during forced alignment with a native speaker acoustic
model [16].

Confidence-based 2 This category includes two features based on the ASR confidence score:
the average word-level confidence score and the time-weighted average
word-level confidence score [17].

Duration 1 This category includes a feature that measures the average difference
between the vowel durations in the utterance and vowel-specific means
based on a corpus of native speech [16].

Grammar Location of Disfluencies 6 This category includes features based on the frequency of between-
clause silences and edit disfluencies compared to within-clause silences
and edit disfluencies [18],[19].

Audio Quality – 2 This category includes two scores based on MFCC features that assess
the probability that the audio file has audio quality problems or does not
contain speech input [20].

ture is to count the number of times different prototypical body
postures co-occur with each other at different time lags over the
course of the time series. As to what these prototypical body
postures are – while this is an interesting research question in
itself, for the purposes of this paper we use cluster centroids
derived from simple K-means clustering on the space of body
postures (in the training dataset) as prototypical body postures.
We experimented with different cluster sizes (16, 32, 64) and
found that 32 clusters gave us the best empirical performance
on the prediction task described below.

Once we perform this clustering, we can replace each frame
of the input Kinect time series data matrix H with the best
matching cluster label (corresponding to the cluster to which it
belongs). This way, the data matrix is now represented by a sin-
gle row vector of cluster labels, Hquant. A HoC-representation
of lag τ is then defined as a vector where each entry corresponds
to the number of times all pairs of cluster labels are observed τ
frames apart. In other words, we construct a vector of lag-τ
co-occurrences where each entry (m,n) signifies the number
of times that the input sequence of activation frames is encoded
into a cluster labelm at time t (in the row vectorHquant), while
encoded into cluster label n at time t+τ [10, 11, 12]. By stack-
ing all (m,n) combinations, each interval can be represented
by a single column vector where the elements express the sum
of all C2 possible lag-τ co-occurrences (where C is the number
of clusters; in our case, 32). See Figure 1 for a schematic of
the HoC feature computations. We can repeat the procedure for
different values of τ , and stack the results into one “supervec-
tor”. Note however, that the dimensionality of the HoC feature
increases by a factor of C2 for each lag value τ that we want to
consider. In our case, we empirically found that choosing four
lag values of 1 to 10 frames (corresponding to 100-1000ms)

gave an optimal prediction performance on regression experi-
ments described below.

3.3. Computing speech features

Regarding measuring speech delivery skills demonstrated in
public speaking, we included features widely used in automated
speech scoring research area, covering diverse measurements
among lexical usage, fluency, pronunciation, prosody, and so
on. In particular, following the feature extraction method de-
scribed in [21], we used SpeechRater, an ETS-internal system
that processes speech and its associated transcription to gener-
ate a series of features on the multiple dimensions of speaking
skills, e.g., speaking rate, prosodic variations, pausing profile,
and pronunciation, which typically is measured by Goodness
of Pronunciation (GOP) [22] or its derivatives. For more de-
tails on the SpeechRater features, please see Table 2. While
prosody and grammar features are directly applicable to assess-
ment of presenters’ speech patterns, the rationale for including
pronunciation and audio quality features in the feature set was
to capture aspects of speakers’ pronunciation and intelligibility,
which could be useful for score prediction.

3.4. Regression experiments

We used linear support vector machines (SVM) to perform re-
gression experiments [23] on each of the 10 scoring dimensions
with leave-one-speaker-out (or 14-fold) cross-validation. We
experimented with both linear as well as radial basis function
(RBF) kernels and empirically found that the former performed
better on the prediction task. This could be due to the large
dimensionality of the HoC feature space. We further tuned hy-
perparameters using a grid-search method.



Table 3: Performance of various feature sets in predicting ten different aspects of multimodal presentation proficiency. The numbers
represent Pearson correlations with the final human-adjudicated score (except for the row enclosed by dashed lines, which represents
Pearson correlations between scores predicted by human raters 1 and 2, ρR1R2 ). The best machine score in each dimension relative to
ρR1R2 are marked in bold. Also shown as a reference benchmark, is the Pearson correlations between each of the raters (1,2) and the
final human-adjudicated score.

Score Dimension
Rater Feature Set 1 2 3 4 5 6 7 8 9 10

Intro Org Conc WC VE NVB AudAdap VisAid Persuasion Holistic

Machine

Kinect HoC 0.35 0.03 0.29 0.11 0.11 0.27 0.05 0.62 0.42 0.06
Kinect Aggregated 0.12 0.53 0.09 0.08 0.16 0.26 0.31 0.03 0.11 0.12
SpeechRater 0.28 0.34 0.03 0.12 0.37 0.22 0.30 0.75 0.48 0.44
Kinect Both 0.27 0.22 0.36 0.12 0.10 0.16 0.07 0.61 0.37 0.08
All 0.21 0.14 0.20 0.16 0.25 0.12 0.14 0.79 0.17 0.11

Inter-rater agreement, ρR1R2 0.24 0.33 0.48 0.11 0.60 0.40 0.15 0.88 0.02 0.39

Human Rater 1 0.70 0.76 0.86 0.79 0.89 0.82 0.70 0.94 0.69 0.81
Rater 2 0.80 0.83 0.83 0.61 0.86 0.83 0.73 0.97 0.63 0.82

4. Observations and results
Table 3 lists the performance of various feature sets in predict-
ing different human-rated scores of the multimodal presenta-
tion. We compare the performance of time-aggregated Kinect
features, time-series HoC Kinect features and SpeechRater fea-
tures as well as their combinations as measured by the mag-
nitude of Pearson correlation with the final human-adjudicated
score. We also present, the Pearson correlations between the
first and second human raters (denoted for ρR1R2 ), and finally,
for benchmarking purposes, the Pearson correlation between
each of the individual human raters’ scores and the final human-
adjudicated score. These last two correlation numbers can be
thought of as a upper bound of sorts on the prediction perfor-
mance.

Let us first focus on the last four scoring dimensions – for
instance, the 8th score, representing skillful use of visual aids,
is predicted with correlations coming close to the human inter-
rater agreement correlation ρR1R2 . Kinect HoC features and
SpeechRater features are particularly useful in this regard, and
a combination of all features provides the best correlation of
0.79. This suggests that features that capture temporal infor-
mation about body movement are very useful in predicting how
well subjects use visual aids in presentations, which makes intu-
itive sense. Further, we see that the 7th, 9th score dimensions,
respresenting audience-adaptation, persuasiveness, and overall
holistic performance respectively, are predicted well by speech
features in particular, although body language captured by both
time-series Kinect features (for score #9) and time-aggregated
features (for score #7) perform well also. Note though that in
these cases the machine correlations are higher than the hu-
man agreement correlation ρR1R2 . Notice that in some of these
cases feature combinations may perform worse than the stan-
dalong features themselves – this could be due to the relatively
larger dimension of the feature fusion (this is especially true in
the case of the HoC features, which are sparse and have of the
order of 10000 dimensions).

We see that Kinect features (both HoC and time-
aggregated) perform well in predicting the 6th set of scores
(non-verbal behavior), while speech features are likewise use-
ful for the 5th dimension (vocal expression). Even though these
correlations are not as high as the human agreement correlation
ρR1R2 , their higher correlation values relative to other features
in each case agrees with our intuitive understanding that non-
verbal behavior can be better captured by looking at temporal
and time-aggregated statistics of body posture data while vocal
expression can be captured by appropriate speech features.

As far as the other four scoring dimensions are concerned,
although our features perform much better than the baseline in
three out of four cases, these may not be readily interpretable
– since these scores capture higher-level meta-characteristics of
the presentation such as quality of introduction, conclusion, or-
ganization skill and word choice – and so it may not be clear
why these scores perform well at the present time. Indeed,
that we observe that combinations of our Kinect features per-
form well on scoring dimensions #1, #2 and #4 might suggest
that these features capture important behavioral aspects of these
meta-characteristics, but understanding and interpreting the rea-
son why is out of the scope of the current paper. Future work
will focus on interpreting the relevance of different features to
predicting the various aspects of the contruct as well as more
tailored features (such as features that specifically look at the
beginning and ending portions of the time-series so as to fo-
cus on the introduction and conclusion) in order to predict these
scores in an interpretable manner.

5. Conclusions
We have presented a comparative analysis of three different fea-
ture sets – time-aggregated Kinect features, time-series (or his-
tograms of cooccurrence) Kinect features and SpeechRater fea-
tures (this combines information from both across and within
time-series) – in predicting different human-rated scores of pre-
sentation proficiency. We found that certain scoring dimensions
were better predicted by speech features, some on Kinect fea-
tures, and others on combinations of all features. We further ob-
served that these features allowed us to achieve prediction per-
formance near human inter-rater agreement for a subset of these
scores. Although there is much room for improvement along the
lines of better, more interpretable and predictive features as well
as machine learning algorithms and methods (indeed, we have
only experimented with support vector regression here), these
experiments provide us significant insight into understanding
how to design better techniques for automated assessment and
scoring of public speaking and presentation proficiency.

6. Acknowledgements
The authors would like to thank Christopher Kitchen, Jilliam
Joe, and Chong Min Lee for their help in developing, organizing
and supervising the data collection and rating process as well as
the processing of speech data. We also thank Keelan Evanini
for help with the SpeechRater feature writeup.



7. References
[1] I. Naim, M. I. Tanveer, D. Gildea, and M. E. Hoque, “Automated

prediction and analysis of job interview performance: The role of
what you say and how you say it.”

[2] L. Nguyen, D. Frauendorfer, M. Schmid Mast, and D. Gatica-
Perez, “Hire me: Computational inference of hirability in employ-
ment interviews based on nonverbal behavior,” IEEE transactions
on multimedia, vol. 16, no. 4, pp. 1018–1031, 2014.

[3] A. Kapoor and R. W. Picard, “Multimodal affect recognition in
learning environments,” in Proceedings of the 13th annual ACM
international conference on Multimedia. ACM, 2005, pp. 677–
682.

[4] F. Pianesi, N. Mana, A. Cappelletti, B. Lepri, and M. Zanca-
naro, “Multimodal recognition of personality traits in social in-
teractions,” in Proceedings of the 10th international conference
on Multimodal interfaces. ACM, 2008, pp. 53–60.

[5] R. Ranganath, D. Jurafsky, and D. A. McFarland, “Detecting
friendly, flirtatious, awkward, and assertive speech in speed-
dates,” Computer Speech & Language, vol. 27, no. 1, pp. 89–115,
2013.

[6] D. Sanchez-Cortes, J.-I. Biel, S. Kumano, J. Yamato, K. Otsuka,
and D. Gatica-Perez, “Inferring mood in ubiquitous conversa-
tional video,” in Proceedings of the 12th International Conference
on Mobile and Ubiquitous Multimedia. ACM, 2013, p. 22.

[7] B. Schuller, A. Batliner, S. Steidl, F. Schiel, and J. Krajewski,
“The interspeech 2011 speaker state challenge,” in Proceedings
INTERSPEECH 2011, 12th Annual Conference of the Interna-
tional Speech Communication Association, 2011, pp. 3201–3204.

[8] B. Schuller, S. Steidl, A. Batliner, E. Nöth, A. Vinciarelli,
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