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Abstract
We propose a cloud-based multimodal dialog platform for the
remote assessment and monitoring of Amyotrophic Lateral
Sclerosis (ALS) at scale. This paper presents our vision, tech-
nology setup, and an initial investigation of the efficacy of the
various acoustic and visual speech metrics automatically ex-
tracted by the platform. 82 healthy controls and 54 people with
ALS (pALS) were instructed to interact with the platform and
completed a battery of speaking tasks designed to probe the
acoustic, articulatory, phonatory, and respiratory aspects of their
speech. We find that multiple acoustic (rate, duration, voicing)
and visual (higher order statistics of the jaw and lip) speech
metrics show statistically significant differences between con-
trols, bulbar symptomatic and bulbar pre-symptomatic patients.
We report on the sensitivity and specificity of these metrics us-
ing five-fold cross-validation. We further conducted a LASSO-
LARS regression analysis to uncover the relative contributions
of various acoustic and visual features in predicting the severity
of patients’ ALS (as measured by their self-reported ALSFRS-
R scores). Our results provide encouraging evidence of the util-
ity of automatically extracted audiovisual analytics for scalable
remote patient assessment and monitoring in ALS.
Index Terms: conversational agent, amyotrophic lateral sclero-
sis, computer vision, dialog systems.

1. Multimodal Conversational Agents for
Health Monitoring

The development of technologies that rapidly diagnose medi-
cal conditions, recognize pathological behaviors, continuously
monitor patient status, and deliver just-in-time interventions us-
ing the user’s native technology environment remains a criti-
cal need today [1]. The COVID-19 pandemic has further high-
lighted the need to make telemedicine and remote monitoring
more readily available to patients with chronic neurological dis-

orders [2]. However, early detection or progress monitoring of
neurological or mental health conditions, such as clinical de-
pression, ALS, Alzheimer’s disease, dementia, etc., is often
challenging for patients due to various reasons, including, but
not limited to: (i) no access to neurologists or psychiatrists; (ii)
lack of awareness of a given condition and the need to see a spe-
cialist; (iii) lack of an effective standardized diagnostic or end-
point; (iv) substantial cost and transportation involved in con-
ventional or traditional solutions; and in some cases (v) lack of
medical specialists in these fields [3].
The NEurological and Mental health Screening Instrument
(NEMSI) [4] was developed to bridge this gap. NEMSI is a
cloud-based multimodal dialog system that can be used to elicit
evidence required for detection or progress monitoring of neu-
rological or mental health conditions through automated screen-
ing interviews conducted over the phone or via web browser.
While intelligent virtual agents have been proposed in previous
work for such diagnosis and monitoring purposes [5, 6], NEMSI
offers three significant innovations: First, NEMSI uses readily
available devices (web browser or mobile app), in contrast to
dedicated, locally administered hardware. Second, NEMSI’s
backend is deployed in an automatically scalable cloud envi-
ronment allowing it to serve an arbitrary number of end-users
at a small cost per interaction. Third, the NEMSI system is
equipped with real-time analytics modules that extract a variety
of speech and video features of direct relevance to clinicians,
such as speech and pause duration for the assessment of ALS,
or geometric features derived from facial landmarks to automat-
ically detect orofacial impairment in stroke.

This paper explores the utility of audio and video met-
rics collected via NEMSI for early diagnosis and monitoring
of ALS. We specifically investigate two research questions.
First, which metrics show statistically significant differences
between (a) healthy controls and bulbar pre-symptomatic peo-
ple with ALS – aka pALS – (thereby assisting in early diag-
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Table 1: Participant characteristics for the three groups – controls (CON), bulbar symptomatic (BUL), and bulbar pre-symptomatic
(PRE). Age and ALSFRS-R scores are presented as: median; mean (standard deviation).

Group Female Male Age (years) ALSFRS-R Bulbar sub score
CON 68 14 43; 41.62 (19.00) 48; 47.89 (0.94) 12; 11.94 (0.36)
BUL 17 15 63; 59.56 (10.29) 36; 33.09 (7.46) 9; 8.75 (1.57)
PRE 12 10 61; 57.18 (11.31) 40; 36.45 (8.58) 12; 12.00 (0.00)

nosis), as well as (b) bulbar-presymptomatic pALS and bul-
bar symptomatic pALS (thereby assisting in progress monitor-
ing)? Second, for pALS cohorts, which metrics are most predic-
tive of their self-reported ALS Functional Rating Scale-Revised
(ALSFRS-R [7]) score? Before addressing these questions, we
briefly summarize the current state of ALS research, and de-
scribe our data collection and metrics extraction process.

2. Current State of ALS Diagnosis and
Monitoring

ALS is a neurodegenerative disease that affects roughly 4 to
6 people per 100,000 of the general population [8, 9]. Early
detection and continuous monitoring of ALS symptoms is cru-
cial to provide optimal patient care [10]. For instance, decline
in speech intelligibility negatively affects patients’ quality of
life [11, 12], and continuous monitoring of speech intelligibil-
ity could prove valuable in terms of patient care. Traditionally,
subjective measures, such as patient-reports or ratings by clini-
cians, are used to detect and monitor speech impairment. How-
ever, recent studies show that objective measures allow for ear-
lier detection of ALS symptoms [13, 14, 15, 16, 17, 18, 19, 20];
stratification and classification of patients [21]; and can provide
markers for disease onset, progression and severity [22, 23, 24,
25, 26, 27]. These objective measures can be automatically ex-
tracted, thereby allowing for more frequent monitoring, poten-
tially improving treatment. The success of the Beiwe Research
Platform [28] to track ALS disease progression demonstrates
the viability of such remote monitoring solutions.

3. Methods
3.1. Collection Setup

NEMSI end users are provided with a website link to the se-
cure screening portal and login credentials by their study liaison
(physician, clinic, a referring website or patient portal). After
completing microphone and camera checks, subjects participate
in a conversation with a virtual dialog agent. The agent engages
subjects in a mixture of structured speaking tasks and open-
ended questions to elicit speech and facial behaviors relevant
for the condition being screened for. Analytics modules auto-
matically extract speech (e.g., speaking rate, duration measures,
fundamental frequency (F0)) and video features (e.g., range and
speed of movement of various facial landmarks) in real time and
store them in a database. All this information can be accessed
by the study liaison through a dashboard, which provides a sum-
mary of the interaction (including a video recording), and a de-
tailed breakdown of the metrics by individual interaction turns.

3.2. Data

The conversational protocol elicits five types of speech sam-
ples from participants, inspired by prior work [29, 30, 31, 32]:
(a) sustained vowel phonation, (b) read speech, (c) measure
of diadochokinetic (DDK) rate (rapidly repeating the syllables
/pAtAkA/), and (d) free speech (picture description task). For (b)

read speech, the dialog contains six speech intelligibility test
(SIT) sentences of increasing length (5 to 15 words), and one
passage reading task (Bamboo Passage; 99 words). After dialog
completion, participants filled out the ALS Functional Rating
Scale-revised (ALSFRS-R), a standard instrument for monitor-
ing the progression of ALS [7]. The questionnaire consists of
12 questions about physical functions in activities of daily liv-
ing. Each question provides five answer options, ranging from
normal function (score 4) to severe disability (score 0). The
ALSFRS-R score is the sum of all sub-scores (ranging from 0
to 48). The ALSFRS-R comprises four scales for different do-
mains affected by the disease: bulbar system, fine and gross
motor skills, and respiratory function.

Data from 136 participants (see Table 1) were collected be-
tween September 2020 and March 2021 in cooperation with
EverythingALS and the Peter Cohen Foundation1. For this
cross-sectional study we included one dialog session per sub-
ject.2 We stratified subjects into three groups for statistical anal-
ysis: (a) Healthy controls (CON); (b) pALS with a bulbar sub-
score < 12 (first three ALSFRS-R questions) were labeled bul-
bar symptomatic (BUL); and (c) pALS with a bulbar sub-score
of 12 were labeled bulbar pre-symptomatic (PRE). Similar to
[14] we aim at identifying acoustic and visual speech measures
that show significant differences between these groups.

4. Signal Processing and Metrics Extraction
4.1. Acoustic Metrics

We use measures commonly established for clinical speech
analysis with regard to ALS [14], including timing and fre-
quency domain measures, and measures specific to the DDK
task, such as syllable rate and cycle-to-cycle temporal varia-
tion [33]. Table 2 shows the metrics and speech task types from
which they are extracted. Additionally, speech intensity (mean
energy in dB SPL excluding pauses) was extracted for all turns.
The picture description task was not used for this analysis.

All acoustic measures were automatically extracted with
the speech analysis software Praat [34]. Speaking and articu-
lation rates are computed based on expected number of words
because forced alignment is error-prone for dysarthric speech
[35]. For that reason, these measures can be noisy if, for exam-
ple, a patient did not finish the reading passage. Hence, we auto-
matically removed outliers based on thresholds for the Bamboo
task: speaking rates > 250 words/min, articulation rates > 350
words/min, and PPT > 80% are excluded.3

4.2. Visual Metrics

Facial metrics were calculated for each utterance in three steps:
(i) face detection using the Dlib4 face detector, which uses

1https://www.everythingals.org/research
2If a subject participated in multiple dialog sessions, we took the

first successful one; i.e., the first complete call for which valid metrics
were extracted and all ALSFRS-R questions were answered.

3The thresholds were determined by manual inspection of the data.
4http://dlib.net/
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Table 2: Acoustic metrics. HNR: harmonics-to-noise ratio,
CPP: cepstral peak prominence, DDK: diadochokinesia, PPT:
percent pause time, cTV: cycle-to-cycle temporal variation.

Speech type Collected metrics
Held vowel Mean F0 (Hz), jitter (%), shimmer (%),

HNR (dB), CPP (dB)
SIT and Speaking and articulation duration (sec),
Bamboo speaking and articulation rate (words/min), PPT

DDK Speaking and articulation duration (sec),
Syllable rate (syllables/sec), number of
produced syllables, cTV (sec)

Table 3: Visual metrics. Maximum (suffix max) and average
( avg) were extracted for all metrics; and for velocity, acceler-
ation, and jerk, minimum ( min) was also extracted.

Category Metrics Description
Move- open Lips opening and

ment width mouth width;
LL path Displacement of lower
JC path lip and jaw center;
eye open Eye opening;
eyebrow vpos Vertical eyebrow

displacement
Velocity vLL Velocity and

vJC speed of lower
vLL abs lip and jaw center
vJC abs (px/frames)

Accel- aLL Acceleration of lower
eration aJC lip and jaw center

aLL abs (px/frames2)
aJC abs

Jerk jLL Jerk of lower
jJC lip and jaw center
jLL abs (px/frames3)
jJC abs

Surface S (S R, S L) Area of the mouth
(right and left half, px2)

S ratio avg Mean symmetry ratio
Eye blinks eye blinks Eye blinks per sec.

five histograms of oriented gradients to determine the (x, y)-
coordinates of one or more faces for every input frame [36],
(ii) facial landmark extraction using the Dlib facial landmark
detector, which uses an ensemble of regression trees proposed
in [37] to extract 68 facial landmarks according to Multi-
PIE [38], and (iii) facial metrics calculation, which uses 20 fa-
cial landmarks to compute the metrics shown in Table 3 (cf.
[39] for details). Finally, all metrics in pixels were normal-
ized within every subject by dividing the values by the inter-
lachrymal distance in pixels (measured as distance between the
right corner of the left eye and the left corner of the right eye).

5. Analyses and Observations
To normalize for sex-specific differences in metrics (such as
F0), we z-scored all metrics by sex group. Additionally, all met-
rics reported below (except speaking and articulation duration)
were averaged across speech task type. A caveat to all the anal-
yses presented here is the imbalance of sample size between the
cohorts; also, future extensions to this work will need a larger
sample size of the BUL and PRE cohorts to make robust and
generalizable statistical claims.

Figure 1: Effect sizes of acoustic and visual metrics that show
statistically significant differences at p < 0.05, shown with
95% confidence interval and ranked by the BUL–CON pair.

5.1. RQ1: Which metrics demonstrated statistically sig-
nificant pairwise differences between controls, bulbar pre-
symptomatic, and bulbar symptomatic pALS cohorts?

We conducted a non-parametric Kruskal-Wallis test for every
acoustic and visual metric to identify those that showed a statis-
tically significant difference between the cohorts. For all met-
rics with p < 0.05 a post-hoc analysis was done (again Kruskal-
Wallis) between every group pair to find out which groups
can be distinguished. Figure 1 shows effect size, measured as
Glass’ ∆ [40], for all metrics that show statistically significant
difference (p < 0.05) between different subject groups.5

In addition to the statistical tests, we conducted 5-fold
cross-validation with logistic regression to investigate binary
classification performances, and in turn sensitivities and speci-
ficities, of our aforementioned metrics in distinguishing the
CON vs PRE (with applications to early diagnosis) and PRE vs
BUL (progress monitoring) groups. We investigated using both
the full feature set as well as feature selection with recursive
feature elimination for classification and found that the latter
performed better as the former method tends to overfit the data,
given our small sample size. Receiver operating characteristics
(ROC) curves for these classification experiments encapsulat-
ing sensitivities and specificities are presented in Figure 2. For
the CON vs PRE case, we observed that the mean unweighted
average recall (UAR) across 5 cross-validation folds was 0.63
± 0.08 (significantly above chance), suggesting promising ap-
plications for early diagnosis. For the PRE vs BUL case (and
therefore progress monitoring), the result was even better with
0.77 ± 0.05. The BUL vs CON case, unsurprisingly, produced
the best results with 0.80 ± 0.08.

Looking at acoustic features, we found that timing mea-
sures (speaking and articulation duration and rate, PPT, syllable
rate, cTV) exhibit strong differences between groups and that
the effect sizes of these metrics are highest between the BUL
group and the CON group. Mean F0 also showed a significant

5To investigate the extent to which sex skew towards females in the
control group affects the results, we re-ran the analysis after randomly
subsampling from the female control group to balance the cohorts. The
results were similar to those observed in Figure 1, with the exception
of (i) maximum values of all visual metrics and (ii) lower lip metrics,
which did not show statistically significant effect sizes. However, given
the smaller sample size in this analysis, we chose to describe results for
the whole dataset in the rest of the paper.
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(a) BUL vs CON (b) BUL vs PRE (c) PRE vs CON

Figure 2: ROC curves displaying the performance of binary classification with 5-fold crossvalidation for all group pairs.

(a) Final 17 features obtained for PRE group (b) First 20 features (out of 23) for BUL group

Figure 3: Acoustic and visual features from the LASSO LARS regression path.

difference with small effect sizes. For visual metrics, the re-
sults indicate that velocity, acceleration, and jerk measures are
generally the best indicators for ALS. Additionally, while the
jaw center (JC) seems to be more important than the lower lip
(LL) for detecting ALS, further investigations are necessary to
ensure that the difference between the JC and LL metrics is not
due to a difference in facial landmark detection accuracy.

5.2. RQ2: Which metrics contribute the most toward pre-
dicting the ALSFRS-R score?

In a regression analysis, we investigated the predictive power
of the extracted metrics with regard to the BUL and PRE co-
horts. We employed a LASSO (least absolute shrinkage and
selection operator) regression with the objective to predict the
total ALSFRS-R score (implemented using least-angle regres-
sion (LARS) algorithm [41]). The algorithm is similar to for-
ward stepwise regression, but instead of including features at
each step, the estimated coefficients are increased in a direction
equiangular to each one’s correlations with the residual.

Figure 3a shows the final 17 features, in the order they were
selected by the LASSO-LARS regression, on data from 19 PRE
samples6 along with the cumulative model R2 at each step. We
observe that both facial metrics (mouth opening and symmetry
ratio, higher order statistics of jaw and lips) and acoustic met-
rics (particularly voice quality metrics such as jitter, shimmer,
and mean F0) added useful predictive power to the model, sug-
gesting that these might be useful in modeling severity in bulbar

6The number of samples in the classification and regression analyses
differ from Table 1 because not all metrics were present for all subjects,
either because system errors or the task was not performed correctly.

pre-symptomatic pALS.

For the BUL cohort, Figure 3b shows a slightly different set
of 20 features obtained using LASSO-LARS (based on 26 par-
ticipants). We observe that facial metrics (eye blinks and brow
positions, in addition to higher order statistics of jaw and lips)
add more predictive power than acoustic metrics (such as cTV,
CPP and mean F0), suggesting that these might find utility in
modeling severity in bulbar symptomatic pALS. These findings
emphasize the benefits of a multimodal approach, which has
also been shown in a similar study under controlled laboratory
conditions [26], as well as the feasibility of utilizing remotely
collected, non-invasive video-based measures.

6. Conclusions

Our findings demonstrate the utility of multimodal dialog tech-
nology for assisting early diagnosis and monitoring of pALS.
Multiple automatically extracted acoustic (rate, duration, voic-
ing) and visual (higher order statistics of the jaw and lip) speech
metrics show significant promise in assisting with both early
diagnosis of bulbar pre-symptomatic ALS vs healthy controls,
as well as for progress monitoring in pALS. Moreover, using
LASSO-LARS to model the relative contribution of these fea-
tures in predicting the ALSFRS-R score highlights the utility of
incorporating different acoustic and visual speech metrics for
modeling severity in bulbar pre-symptomatic and bulbar symp-
tomatic pALS. Future work will expand these analyses to more
speakers and a more balanced age distribution across cohorts to
ensure statistical robustness and generalizability of these trends.
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