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Abstract

We present a method to derive a small number of speech
motor control “primitives” that can produce linguistically-
interpretable articulatory movements. We envision that such
a dictionary of primitives can be useful for speech motor con-
trol, particularly in finding a low-dimensional subspace for such
control. First, we use the iterative Linear Quadratic Gaussian
with Learned Dynamics (iLQG-LD) algorithm to derive (for
a set of utterances) a set of stochastically optimal control in-
puts to a learned dynamical systems model of the vocal tract
that produces desired movement sequences. Second, we use a
convolutive Nonnegative Matrix Factorization with sparseness
constraints (¢(NMFsc) algorithm to find a small dictionary of
control input primitives that can be used to reproduce the afore-
mentioned optimal control inputs that produce the observed ar-
ticulatory movements. The method performs favorably on both
qualitative and quantitative evaluations conducted on synthetic
data produced by an articulatory synthesizer. Such a primitives-
based framework could help inform theories of speech motor
control and coordination.

Index Terms: speech motor control, motor primitives, syner-
gies, dynamical systems, iLQG, NMF.

1. Introduction

Mussa-Ivaldi and Solla (2004) [1] argue that in order to gener-
ate and control complex behaviors, the brain does not need to
solve systems of coupled equations. Instead a more plausible
mechanism is the construction of a vocabulary of fundamental
patterns, or primitives, that are combined sequentially and in
parallel for producing a broad repertoire of coordinated actions.
An example of how these could be neurophysiologically imple-
mented in the human body could be as functional units in the
spinal cord that each generate a specific motor output by im-
posing a specific pattern of muscle activation [2]. Although this
topic remains relatively unexplored in the speech domain, there
has been significant work on unconvering motor primitives in
the general motor control community. For instance, [3, 2] pro-
posed a variant on a nonnegative matrix factorization algorithm
to extract muscle synergies from frogs that performed various
movements. More recently, [4] extended these ideas to the con-
trol domain, and showed that the various movements of a two-
joint robot arm could be effected by a small number of control
primitives.

The working hypothesis of this paper is that a small set of
control primitives can be used to generate the complex vocal
tract actions of speech. In previous work [5, 6], we proposed
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a method to extract interpretable articulatory movement prim-
itives from raw speech production data. Articulatory move-
ment primitives may be defined as a dictionary or template set
of articulatory movement patterns in space and time, weighted
combinations of the elements of which can be used to represent
the complete set of coordinated spatio-temporal movements of
vocal tract articulators required for speech production. In this
work, we propose an extension of these ideas to a control sys-
tems framework. In other words, we want to find a dictionary of
control signal inputs to the vocal tract dynamical system, which
can then be used to control the system to produce any desired
sequence of movements.

2. Data

We analyzed synthetic VCV (vowel-consonant-vowel) data
generated by the Task Dynamics Application (or TaDA) soft-
ware [7, 8] — which implements the Task Dynamic model of
inter-articulator coordination in speech within the framework
of Articulatory Phonology [9]. We chose to analyze synthetic
data since (i) articulatory data is generated by a known com-
positional model of speech production, and (ii) we can gener-
ate a balanced dataset of VCV observations. TaDA also incor-
porates a coupled-oscillator model of inter-gestural planning, a
gestural-coupling model, and a configurable articulatory speech
synthesizer [10, 11] (see Figure 1). TaDA generates articula-
tory and acoustic outputs from orthographical (ARPABET) in-
put. The ARPABET input is syllabified, parsed into gestural
regimes and inter-gestural coupling relations using hand-tuned
dictionaries and then converted into a gestural score. The ob-
tained gestural score is an ensemble of constriction tasks, or
gestures, for the utterance, specifying the intervals of time dur-
ing which particular constriction tasks are active. This is finally
used by the Task Dynamic model implementation in TaDA to
calculate the time functions of the articulators whose motions
achieve the constriction tasks (sampled at 200 Hz).

We generated 972 VCVs corresponding to all combinations
of 9 English monophthongs and 12 consonants (including stops,
fricatives, nasals and approximants). Each VCV can be repre-
sented as a sequence of articulatory states. In our case, the artic-
ulatory state at each sampling instant is a ten-dimensional vec-
tor comprising the eight articulatory parameters plotted in Fig-
ure 1 and two additional parameters to capture the nasal aper-
ture and glottal width. We then downsampled the articulatory
state trajectories to 100 Hz. We further normalized data in each
channel (by its range) such that all data values lie between 0 and
1.
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Figure 1: A visualization of the Configurable Articulatory Syn-
thesizer (CASY) in a neutral position, showing the outline of
the vocal tract model (as shown in [12]). Overlain are the key
points (black crosses) and geometric reference lines (dashed
lines) used to define the model articulator parameters (black
lines and angles), which are: lip protrusion (LX), vertical dis-
placements of the upper lip (UY) and lower lip (LY) relative to
the teeth, jaw angle (JA), tongue body angle (CA), tongue body
length (CL), tongue tip length (TL), and tongue angle (TA).

3. Computing control synergies

In order to find primitive control signals, we first need to use
optimal control techniques to compute appropriate control in-
puts that can drive the dynamical system given in Equation 1 to
produce the set of articulatory data trajectories corresponding
to each of our synthesized VCVs'. Once we estimate the con-
trol inputs, we can use these as input to algorithms that learn
spatiotemporal dictionaries such as the cNMFsc algorithm [5]
to obtain control primitives.

3.1. Computing optimal control signals

To find the optimal control signal for a given task, a suitable cost
function must be minimized. Unfortunately, when using non-
linear systems such as the vocal tract system described above,
this minimization is computationally intractable. Researchers
typically resort to approximate methods to find locally optimal
solutions. One such method, the iterative linear quadratic gaus-
sian iILQG) method [13, 14, 4], starts with an initial guess of the
optimal control signal and iteratively improves it. The method
uses iterative linearizations of the nonlinear dynamics around
the current trajectory, and improves that trajectory via modified
Riccati equations.

However, iLQG in its basic form still requires a model of
the system dynamics given by the equation & = f(z, u), where
x is the articulatory state and w is the control input. In order to
eliminate this need and enable the to algorithm adapt to changes
in the system dynamics in real time, Mitrovic et al. proposed
an extension, called iLQG with Learned Dynamics, or iLQG-
LD, wherein we learn the mapping f using a computationally
efficient machine learning technique such as Locally Weighted
Projection Regression, or LWPR [15].

In our case, we pass as input to this algorithm articulator
trajectories (see Section 2), and obtain as output a set of control
signals (timeseries) 7 that can effect those sequence of move-
ments (one timeseries per articulator trajectory). In order to
initialize the LWPR model of the dynamics, we used a linear,
second-order critically-damped model of vocal tract articulator
dynamics (after the Task Dynamics model of speech articula-
tion [16]):

'We choose to estimate the controls, since (i) this is more applicable
to real data, where the controls are unknown, and (ii) directly obtaining
the controls from the TaDA synthesizer is non-trivial.
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Figure 2: Schematic illustrating the proposed method. We first
learn the functional mapping f of the system dynamics given
by & = f(x,u). We initialize the model using data generated
by a simple second-order model of the dynamics. The matrix
V of control inputs required to generate the input articulatory
state sequences is then estimated using the iLQG-LD algorithm,
which is then passed as input to the cNMFsc algorithm to obtain
a three-dimensional matrix of articulatory primitives, W, and
an activation matrix H, the rows of which denote the activation
of each of these time-varying primitives/basis functions in time.
In this example, each vertical slab of W is one of 5 primitives
(numbered 1 to 5).

GH+M B+ M Kp=r1 (1

where ¢ is a vector of articulatory variables.In our experiments,
we found that choosing M = I, B = 2wl, and £ = w?
worked well for LWPR model initialization purposes (where
I is the identity matrix and w is the critical frequency of the
(critically-damped) spring-mass dynamical system, which we
set as 0.6°).

3.2. Extraction of control primitives

Modeling data vectors as sparse linear combinations of basis el-
ements is a general computational approach (termed variously
as dictionary learning or sparse coding or sparse matrix fac-
torization depending on the exact problem formulation) which
we will use to solve our problem [17, 18, 19, 20, 21]. If 74,
T2, ..., Tn are the N = 972 control matrices obtained us-
ing iLQG for each of the 972 VCVs, then we will first con-
catenate these matrices together to form a large data matrix
V = [ri|m2|... |7~ ]. We will then use convolutive nonneg-
ative matrix factorization or cNMF [19] to solve our problem.

2This value was chosen empirically as the mean of w values that the
TaDA model uses for consonant and vowel gestures respectively.
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Figure 3: (a) Histograms of root mean squared error (RMSE)
computed on the reconstructed control signals using the cN-
MFsc algorithm over all 972 VCV utterances, and (b) the cor-
responding RMSE in reconstructing articulator movement tra-
Jectories from these control signals using Equation 1.

c¢NMF aims to find an approximation of the data matrix V us-
ing a basis tensor W and an activation matrix H in the mean-
squared sense. We further add a sparsity constraint on the rows
of the activation matrix to obtain the final formulation of our op-
timization problem, termed cNMF with sparseness constraints
(or cNMFsc) [5, 6]:

0.6 08
RMSE

T—1
. 5t2 _ .
min |V — ;ZO W(t) - H ||” s.t. sparseness(h;) = Sy, Vi. (2)

where each column of W(t) € R=%M*X s a time-varying

basis vector sequence, each row of H € RZ%KXN i jts cor-
responding activation vector (h; is the i*" row of H), T is the
temporal length of each basis (number of image frames) and the

(T)Z operator is a shift operator that moves the columns of its ar-
gument by ¢ spots to the right, as detailed in [19]. Note that the
level of sparseness (0 < Sj, < 1) is user-defined. See Rama-
narayanan et al. [5, 6] for the details of an algorithm that can be
used to solve this problem.

4. Experiments and Results

The three-dimensional W matrix and the two-dimensional H
matrix described above allows us to form an approximate recon-
struction, Vrecon, Of the original control matrix V. This matrix
Viecon can be used to reconstruct the original articulatory tra-
jectories for each VCV by simulating the dynamical system in
Equation 1. Figures 3a and 3b show the performance of the al-
gorithm in recovering the original control signals and movement
trajectories in such a manner, respectively. We observed that the
model accounts for a large amount of variance in the original
data and the root mean squared errors of the original movements
and controls were 0.16 and 0.29, respectively, on average®. The
cNMFsc algorithm parameters used were S;, = 0.65, K = 8
and T = 10. The sparseness parameter was chosen empirically
to reflect the percentage of gestures that were active at any given
sampling instant (~ 35%), while the number of bases were se-
lected based on the Akaike Information Criterion or AIC [22],
which in this case tends to prefer more parsimonious models.
The temporal extent of each basis was chosen to capture effects
of the order of 100ms. See [6] for a more complete discussion
on parameter selection.

Note that each control primitive could effect different
movements of vocal tract articulators depending on their initial

3Recall that earlier we normalized each row of both the articulatory
and control matrices to the proportion of its respective range (which will
in turn be different for the articulatory matrix versus the control matrix),
and so the RMSE values can be interpreted accordingly.
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Figure 5: Median activations of the 8 bases plotted in Figure
4 contributing to the production of different sounds computed
over all 972 VCV utterances, for (a) select stop consonants and
(b) selected vowels.

position/configuration. For example, Figure 4 shows 8 move-
ment sequences effected by 8 control primitives for one partic-
ular choice of a starting position. Each row of plots were gener-
ated by taking one control primitive sequence, using it to sim-
ulate the dynamical system learned using the iLQG-LD algo-
rithm, and visualizing the resulting movement sequence”®. Fig-
ure 5 shows the median activations of each of the eight bases in
Figure 4 for selected phones of interest. We see that the prim-
itives produce movements that are interpretable: for instance,
the bases that are activated the most for P, T, and K are those
involved in lip, tongue tip, and tongue dorsum constrictions re-
spectively. For vowels, we also observe linguistically-meaning
patterning: I'Y, AA and UW involve high activations of controls
that produce palatal, pharyngeal and velar/uvular constrictions,
respectively.

5. Conclusions and Outlook

We have described a technique to extract synergies of control
signal inputs that actuate a learned dynamical systems model
of the vocal tract. We further observe, using data generated by
the TaDA configurable articulatory synthesizer that this method
allows us to extract control primitives that effect linguistically-
meaningful vocal tract movements.

Work described in this paper can help in formulating speech
motor control theories that are control synergy- or primitives-
based. The idea of motor primitives allows us to explore many
longstanding questions in speech motor control in a new light.
For instance, consider the case of coarticulation in speech,
where the position of an articulator/element may be affected by
the previous and following target [23]. In other words, different
movement sequences could result from changes in the timing
and ordering of the same set of control primitives. Constructing
internal control representations from a linear combination of a
reduced set of modifiable basis functions tremendously simpli-
fies the task of learning new skills, generalizing to novel tasks
or adapting to new environments [24].
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