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Abstract
We present a method to derive a small number of

speech motor control “primitives” that can produce
linguistically-interpretable articulatory movements. We
envision that such a dictionary of primitives can be useful
for speech motor control, particularly in finding a low-
dimensional subspace for such control. First, we use the
iterative Linear Quadratic Gaussian (iLQG) algorithm to
derive (for a set of utterances) a set of stochastically op-
timal control inputs to a dynamical systems model of the
vocal tract that produces desired movement sequences.
Second, we use a convolutive Nonnegative Matrix Fac-
torization with sparseness constraints (cNMFsc) algo-
rithm to find a small dictionary of control input primi-
tives that can be used to reproduce the aforementioned
optimal control inputs that produce the observed artic-
ulatory movements. Such a primitives-based framework
could help inform theories of speech motor control and
coordination.
Keywords: speech motor control, motor primitives, syn-
ergies, dynamical systems, iLQG, NMF.

1. Introduction
Mussa-Ivaldi and Solla (2004) [1] argue that in order to
generate and control complex behaviors, the brain does
not need to solve systems of coupled equations. Instead
a more plausible mechanism is the construction of a vo-
cabulary of fundamental patterns, or primitives, that are
combined sequentially and in parallel for producing a
broad repertoire of coordinated actions. An example of
how these could be neurophysiologically implemented in
the human body could be as functional units in the spinal
cord that each generate a specific motor output by impos-
ing a specific pattern of muscle activation [2]. Although
this topic remains relatively unexplored in the speech do-
main, there has been significant work on unconvering
motor primitives in the general motor control community.
For instance, [3, 2] proposed a variant on a nonnegative
matrix factorization algorithm to extract muscle synergies
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from frogs that performed various movements. More re-
cently, [4] extended these ideas to the control domain,
and showed that the various movements of a two-joint
robot arm could be effected by a small number of control
primitives.

In previous work [5, 6], we proposed a method to ex-
tract interpretable articulatory movement primitives from
raw speech production data. Articulatory movement
primitives may be defined as a dictionary or template
set of articulatory movement patterns in space and time,
weighted combinations of the elements of which can be
used to represent the complete set of coordinated spatio-
temporal movements of vocal tract articulators required
for speech production. In this work, we propose an ex-
tension of these ideas to a control systems framework. In
other words, we want to find a dictionary of control sig-
nal inputs to the vocal tract dynamical system, which can
then be used to control the system to produce any desired
sequence of movements.

2. Data
We analyzed synthetic VCV (vowel-consonant-vowel)
data generated by the Task Dynamics Application (or
TaDA) software [7, 8] – which implements the Task
Dynamic model of inter-articulator speech coordination
with the framework of Articulatory Phonology [9]. We
chose to analyze synthetic data since (i) articulatory
data is generated by a known compositional model of
speech production, and (ii) we can generate a balanced
dataset of VCV observations. TaDA also incorporates
a coupled-oscillator model of inter-gestural planning, a
gestural-coupling model, and a configurable articulatory
speech synthesizer [10, 11] (see Figure 1). TaDA gener-
ates articulatory and acoustic outputs from orthograph-
ical input. The orthographic input is syllabified using
the Carnegie Mellon pronouncing dictionary, parsed into
gestural regimes and inter-gestural coupling relations us-
ing hand-tuned dictionaries and then converted into a ges-
tural score. The obtained gestural score is an ensemble of
gestures for the utterance, specifying the intervals of time
during which particular constriction gestures are active.



Figure 1: A visualization of the Configurable Articulatory Synthesizer
(CASY) in a neutral position, showing the outline of the vocal tract model (as
shown in [12]). Overlain are the key points (black crosses) and geometric refer-
ence lines (dashed lines) used to define the model articulator parameters (black
lines and angles), which are: lip protrusion (LX), vertical displacements of the
upper lip (UY) and lower lip (LY) relative to the teeth, jaw angle (JA), tongue
body angle (CA), tongue body length (CL), tongue tip length (TL), and tongue
angle (TA).

This is finally used by the Task Dynamic model imple-
mentation in TaDA to generate the task variable and ar-
ticulator time functions, which are further mapped to the
vocal tract area function (sampled at 200 Hz).

We generated 972 VCVs corresponding to all combi-
nations of 9 English monophthongs and 12 consonants
(including stops, fricatives, nasals and approximants).
Each VCV can be represented as a sequence of articula-
tory states. In our case, the articulatory state at each sam-
pling instant is a 10-dimensional vector comprising the
8 articulatory parameters plotted in Figure 1 and 2 addi-
tional parameters to capture the nasal aperture and glottal
width. We then downsampled the articulatory state tra-
jectories to 100 Hz. We further normalized data in each
channel (by its range) such that all data values lie between
0 and 1.

3. Dynamical systems model of the vocal
tract
We need to define a suitable model of vocal tract dynam-
ics which we can then use to simulate vocal tract dynam-
ics on application of control inputs. We will adopt and
extend the Task Dynamics model of speech articulation
(after [13]):

Mz̈ +Bż +Kz = τ̂ (1)

z = f(φ) (2)

ż = J(φ)φ̇ (3)

z̈ = J(φ)φ̈+ J̇(φ, φ̇)φ̇ (4)

where z refers to the task variable (or goal variable) vec-
tor, which is defined in TaDA as a set of constriction de-
grees (such as lip aperture, tongue tip constriction degree,
velic aperture, etc.) or locations (such as tongue tip con-
striction location). M is the mass matrix, B is the damp-
ing coefficient matrix, and K is the stiffness coefficient
matrix of the second-order dynamical system model. τ̂
is a control input. However, in motor control, we typi-
cally cannot directly control these task varables. We can
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Figure 2: Schematic illustrating the proposed method. The input articulatory
state trajectories and a simple second-order model of the system dynamics are
used as input to the iLQG algorithm to generate a matrix V of control inputs.
This matrix V is then passed as input to the cNMFsc algorithm to obtain a three-
dimensional matrix of articulatory primitives, W, and an activation matrix H, the
rows of which denote the activation of each of these time-varying primitives/basis
functions in time. In this example, we assume that there are M = 7 control
trajectories. Each vertical slab of W is one of 5 primitives (numbered 1 to 5).
For instance, the white tube represents a single component of the 3rd primitive
that corresponds to the first control dimension (T samples long).

only control so-called articulatory variables, φ, which
can be nonlinearly related to the task variables using the
so-called ‘direct kinematics’ relationship (Equation 2-4).
Using this relationship, we can derive the equation of
the corresponding dynamical system for controlling the
model articulators (for e.g., see Figure 1):

φ̈+ (J†M−1BJ + J†J̇)φ̇+ J†M−1Kf(φ) = τ (5)

where J is the Jacobian matrix (which can be obtained
from TaDA). In our experiments, we chose M = I ,
B = 2ωI , and K = ω2, where I is the identity matrix
and ω is the critical frequency of the (critically-damped)
spring-mass dynamical system, which we set as 0.61. For
simplicity, in initial experiments described in this paper
we chose the derivative of the Jacobian matrix, J̇ , to be
the zero matrix, and assumed that f(φ) is locally linear.

1This value was chosen empirically as the mean of ω values that
TaDA uses for consonant and vowel gestures respectively.



4. Computing control synergies
4.1. Computing optimal control signals

To find the optimal control signal for a given task, a suit-
able cost function must be minimized. Unfortunately,
when using nonlinear systems such as the vocal tract sys-
tem described above, this minimization is computation-
ally intractable. Researchers typically resort to approxi-
mate methods to find locally optimal solutions. One such
method, the iterative linear quadratic gaussian (iLQG)
method [14, 15, 4], starts with an initial guess of the
optimal control signal and iteratively improves it. The
method uses iterative linearizations of the nonlinear dy-
namics around the current trajectory, and improves that
trajectory via modified Riccati equations.

In our case, we pass as input to this algorithm artic-
ulator trajectories (see Section 2), and obtain as output a
set of control signals (timeseries) τ that can effect those
sequence of movements (one timeseries per articulator
trajectory).

4.2. Extraction of control primitives

Modeling data vectors as sparse linear combinations
of basis elements is a general computational approach
(termed variously as dictionary learning or sparse cod-
ing or sparse matrix factorization depending on the ex-
act problem formulation) which we will use to solve our
problem [16, 17, 18, 19, 20]. If τ1, τ2, . . . , τN are
the N = 972 control matrices obtained using iLQG
for each of the 972 VCVs, then we will first concate-
nate these matrices together to form a large data matrix
V = [τ1 |τ2 | . . . |τN ]. We will then use convolutive non-
negative matrix factorization or cNMF [18] to solve our
problem. cNMF aims to find an approximation of the data
matrix V using a basis tensor W and an activation matrix
H in the mean-squared sense. We further add a sparsity
constraint on the rows of the activation matrix to obtain
the final formulation of our optimization problem, termed
cNMF with sparseness constraints (or cNMFsc) [5, 6]:

min
W,H
‖V−

T−1∑
t=0

W(t) · ~H
t
‖2 s.t. sparseness(hi) = Sh, ∀i. (6)

where each column of W(t) ∈ R≥0,M×K is a time-
varying basis vector sequence, each row of H ∈
R≥0,K×N is its corresponding activation vector (hi is
the ith row of H), T is the temporal length of each ba-

sis (number of image frames) and the ~(·)
i

operator is a
shift operator that moves the columns of its argument by
i spots to the right, as detailed in [18]. Note that the level
of sparseness (0 ≤ Sh ≤ 1) is user-defined. See Rama-
narayanan et al. [5, 6] for the details of an algorithm that
can be used to solve this problem.

5. Experiments and Results
The three-dimensional W matrix and the two-
dimensional H matrix described above allows us to
form an approximate reconstruction, Vrecon, of the
original control matrix V. This matrix Vrecon can be
used to reconstruct the original articulatory trajectories
for each VCV by simulating the dynamical system
in Equation 5. The root mean squared errors of the
original movements and controls were approx. 0.34 and
0.4, respectively, on average. The cNMFsc algorithm
parameters used were Sh = 0.65, K = 8 and T = 10.
The sparseness parameter was chosen empirically to
reflect the percentage of gestures that were active at any
given sampling instant (∼ 35%), while the number of
bases were selected based on the Akaike Information
Criterion or AIC [21], which in this case tends to prefer
more parsimonious models. The temporal extent of each
basis was chosen to capture effects of the order of 100ms.
See [6] for a more complete discussion on parameter
selection.

Note that each control primitive could effect differ-
ent movements of vocal tract articulators depending on
their initial position/configuration. For example, Figure 3
shows 8 movement sequences effected by 8 control prim-
itives for one particular choice of a starting position. Each
row of plots were generated by taking one control primi-
tive sequence, using it to simulate the dynamical system
learned using the iLQG algorithm, and visualizing the re-
sulting movement sequence2.

6. Conclusions and Outlook
We have described a technique to extract synergies of
control signal inputs that actuate a learned dynamical
systems model of the vocal tract. Work described in
this paper can help in formulating speech motor con-
trol theories that are control synergy- or primitives-based.
The idea of motor primitives allows us to explore many
longstanding questions in speech motor control in a new
light. For instance, consider the case of coarticulation
in speech, where the position of an articulator/element
may be affected by the previous and following target [22].
Constructing internal neural representations from a linear
combination of a reduced set of modifiable basis func-
tions tremendously simplifies the task of learning new
skills, generalizing to novel tasks or adapting to new en-
vironments [23].
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